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A magnetic sail is an advanced propellantless propulsion system concept for deep space missions, 
proposed by Dana Andrews and Robert Zubrin about 30 years ago. The thrust is generated by the 
electromagnetic interaction between the solar wind charged particles and an artificial magnetic field 
obtained through a large current-carrying coil made of superconducting material. This paper discusses 
an up-to-date single-loop magnetic sail thrust model based on the numerical and experimental results 
obtained in the last decade. In particular, a particle model is initially used to evaluate the performance 
of a reference configuration in terms of thrust components in a body reference frame. Then, some scaling 
relationships are used to estimate the magnetic sail performance as a function of the design parameters. 
The proposed thrust model is used to analyze the minimum-time transfer problem between two circular 
and coplanar heliocentric orbits. Minimum flight times necessary to complete ephemeris-free Earth-
Venus and Earth-Mars transfers are calculated as a function of the magnetic sail characteristic size in 
a parametric way.

© 2023 Elsevier Masson SAS. All rights reserved.
1. Introduction

The restricted amount of propellant, the need for gravity assist 
maneuvers [1], and the existence of narrow launch windows are 
the main limitations in the use of chemical thrusters for interplan-
etary missions [2,3]. Continuous-thrust propellantless propulsion 
systems represent an interesting alternative in case of high-energy 
transfers [4,5] or long-term missions in deep space [6–9]. In fact, 
these systems are able to exploit an external (that is, not stored on 
board) power source that guarantees a theoretically unlimited �v
capability. Among the propellantless thrusters, a number of scien-
tific papers have been devoted to the study of solar sails [10–13], 
which exploit the solar irradiance, or to electric [14,15] and mag-
netic [16] sails, which exploit the electrically charged particles of 
the solar wind to generate thrust in the interplanetary space.

The idea of a magnetic sail (MagSail) was conceived at the end 
of the 80s by Andrews and Zubrin [16–20] as an advanced propul-
sion concept suitable for either interplanetary or interstellar scien-
tific missions. A MagSail is a propellantless device consisting of a 
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large current-carrying coil made of superconducting material. The 
electric current flowing in this coil generates an artificial magnetic 
field that interacts with the solar wind (SW) particles through the 
Lorentz force, thus giving rise to a thrust capable of maneuver-
ing the spacecraft in deep space. The multi-coil MagSails have also 
been proposed in the recent literature [21], in which the magnetic 
field distribution is established by the superposition principle. In 
particular, according to Murayama et al. [21], the multi-coil Mag-
Sails could be used to create an ideal magnetic field structure. 
Fig. 1 shows an artistic illustration of a three-coil MagSail (cour-
tesy of Steve Bowers).

Although the MagSail is usually described as a single- (or a 
multi-) coil, a MagSail-based spacecraft also includes the deploy-
ment system, a shielding structure necessary to protect the tethers 
and the sail from micrometeorites, and an additional power sys-
tem [19]. Typically, the payload is placed at the center of the coil 
and is connected to it by a set of supporting tethers, which allow 
the spacecraft to displace its center of mass in the plane of the 
conducting coil [19]. The latter arrangement is used to perform the 
required attitude control, since the required control torque is ob-
tained by creating a suitable displacement between the spacecraft 
center of mass and the center of pressure [19].

https://doi.org/10.1016/j.ast.2023.108113
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2023.108113&domain=pdf
mailto:marco.bassetto@ing.unipi.it
mailto:nikolaos.perakis@tum.de
mailto:a.quarta@ing.unipi.it
mailto:g.mengali@ing.unipi.it
https://doi.org/10.1016/j.ast.2023.108113


M. Bassetto, N. Perakis, A.A. Quarta et al. Aerospace Science and Technology 133 (2023) 108113

Nomenclature

a propulsive acceleration vector, with a = ‖a‖ . [mm/s2]
{ar, at, an} components of a in TRTN . . . . . . . . . . . . . . . . . . [mm/s2]
d̂ auxiliary unit vector
e error vector
f dynamics vector
f payload mass fraction
F thrust vector, [μN]
{Fr, Ft , Fn} components of F in TRTN . . . . . . . . . . . . . . . . . . . . [μN]
{Fx, F y, F z} components of F in TXYZ . . . . . . . . . . . . . . . . . . . . [μN]
H Hamiltonian function
H maximized Hamiltonian
Hc part of H that depends on the controls
I electric current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [A]
Ic critical value of I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [A]
{î, ĵ, k̂} unit vectors of TXYZ
J cost function
j electric current density . . . . . . . . . . . . . . . . . . . . . . . . [A/m2]
m magnetic dipole moment . . . . . . . . . . . . . . . . . . . . . . . [A m2]
mtot total spacecraft mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [kg]
np particle density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m−3]
O Sun’s center of mass
R conducting coil radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [m]
r Sun-spacecraft distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . [au]
{r̂, t̂, n̂} unit vectors of TRTN
S spacecraft center of mass
t time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [days]
T� heliocentric polar reference frame
TRTN radial-transverse-normal reference frame
TXYZ body reference frame
v spacecraft velocity vector . . . . . . . . . . . . . . . . . . . . . . [km/s]
{vr, vt , vn} components of v in TRTN . . . . . . . . . . . . . . . . . . . [km/s]
vSW solar wind speed relative to S . . . . . . . . . . . . . . . . . [km/s]
x state vector
α incidence angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]

αd angle between d̂ and r̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
αt thrust angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
αλ primer vector angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
γ flight path angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
δ clock angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
δd clock angle of d̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
θ pitch angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
λ costate vector
λp primer vector, with 

∥∥λp
∥∥ = λp

{λr, λϕ, λvr , λvt } components of λ
μ� Sun’s gravitational parameter . . . . . . . . . . . . . . . . [km3/s2]
ρ mass density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [kg/m3]
τ switching parameter
ϕ spacecraft polar angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . [rad]
Subscripts

0 initial
f final

Subscripts

ref reference
· time derivative
∧ unit vector
� optimal

List of acronyms

HTS high-temperature superconducting
MDM magnetic dipole moment
MHD magnetohydrodynamic
IMF interplanetary magnetic field
PIC particle-in-cell
SiLM single-loop MagSail
SW solar wind
Fig. 1. Artistic illustration of a three-coil MagSail. Courtesy of Steve Bowers.

1.1. A short review of the recent studies on MagSail concept

In the last two decades, the results obtained from numerical 
simulations and experimental tests made on scale models have 
given important information about the MagSail performance. As 
far as numerical methods are concerned, the study of the inter-
action between the SW plasma particles and the magnetic field 
surrounding the MagSail has been addressed with different ap-
proaches. Fujita [22] analyzed the electromagnetic interaction be-
tween SW and moderately-sized MagSails when their size reduces 
2

to below the continuum limit at which the magnetohydrodynamic 
(MHD) approximations of the plasma flow fail. In his simulations, 
Fujita [22] used a hybrid particle-in-cell (PIC) method to take into 
account the finite Larmor-radius effect of the electromagnetic in-
teraction between the plasma flow and the artificial magnetic field. 
By changing the size of the MagSail from several kilometers to 
a few thousand kilometers, Ref. [22] shows that the drag coeffi-
cient decreases as the ratio of the ion Larmor radius to the radius 
of the magneto-hydrodynamic interaction becomes greater than 
unity. Later, Akita and Suzuki [23] considered a 10 m MagSail to 
simulate the electromagnetic interaction between SW and a mag-
netic field using a full PIC method, while Nishida et al. [24,25]
used the MHD model to deeply analyze how a variation in SW 
momentum is transferred to the spacecraft via the Lorentz force. 
More recently, a two-and-half-dimensional full PIC simulation was 
carried out by Moritaka et al. [26], who observed a magnetic infla-
tion mediated by the gyration motion of the injected ions, which 
is responsible (when the artificial magnetosphere has a scale com-
parable with the gyration radius) for the formation of an ion-rich 
region near the direction-reversal position of the injected ions.

In the same years, Yamamoto et al. [27] performed three-
dimensional ideal MHD simulations to show the effect of the inter-
planetary magnetic field (IMF) on the MagSail thrust. In particular, 
Yamamoto et al. [27] revealed that a high thrust is obtained when 
the IMF is perpendicular to the particle stream and to the mag-
netic dipole moment (MDM) generated by the superconducting 
coil, while Kajimura et al. [28] made three-dimensional hybrid (i.e., 
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ion particle and electron fluid) PIC simulations in the range from 
the ion inertial scale to the MHD scale and showed that, indepen-
dently of the magnetosphere size, the spacecraft attitude is stable 
when the MDM is perpendicular to the SW flow. Ashida et al. [29]
evaluated the thrust characteristics of a MagSail by suggesting a 
new numerical model, including the ion finite Larmor-radius effect, 
in which the particle trajectories are solved based on a flux-tube 
model and the electrons are treated as a plasma fluid under the 
assumptions of quasi-neutrality and steady state conditions. The 
results found by Ashida et al. [29], which agree with those ob-
tained by MHD and hybrid PIC models, were derived with a com-
putational cost reduced by up to one tenth of that of the hybrid 
PIC model. Nishida and Funaki [30] used a resistive MHD model in 
a two-dimensional space and showed that, if the SW is not mag-
netized by the IMF, the sail attitude is stable when the MDM is 
perpendicular to the SW flow. Conversely, the IMF rotates the sail 
so as to align the MDM with the IMF, thus revealing that the sail 
stability is strongly affected by the IMF itself.

Using MHD and particle simulations, Funaki et al. [31] showed 
that the release of a low-velocity plasma from the MagSail excites 
an equatorial ring-current around the spacecraft, which creates 
a larger magnetosphere and a corresponding larger thrust mag-
nitude. Nagasaki et al. [32] analyzed the current transport, the 
thermal characteristics, and the applied stresses of yttrium barium 
copper oxide (YBCO)-coated conductors for the optimal design of 
high-temperature superconducting (HTS) coils to be used in deep 
space as a propellantless propulsion system. Ashida et al. [33]
performed three-dimensional PIC simulations on small-scale mag-
netospheres to investigate the thrust characteristics of small-scale 
MagSails. In particular, Ashida et al. [33] showed that the elec-
tron Larmor motion and the charge separation become significant, 
and the thrust is influenced by the cross-sectional area of the 
charge-separated plasma cavity. They also showed that the thrust 
generated by a small-scale MagSail is roughly proportional to the 
MDM, the SW density, and the SW speed. In another work, Ashida 
et al. [34] conducted two-dimensional PIC simulations on small-
scale magnetospheres to investigate the thrust characteristics of a 
MagSail, assuming that the magnetosphere is inflated by an ad-
ditional plasma injection. With this assumption, the authors [34]
fund that the additional plasma injection can effectively increase 
the thrust by inducing a diamagnetic current in the same direction 
as the coil current. Finally, scaling laws using particle simulations 
were derived by Gros [35] for the MagSail axial configuration.

In the field of experimental investigations of small-scale Mag-
Sails, Kojima et al. [36] conducted a scaled-down laboratory exper-
iment in a space chamber and showed the feasibility of a MagSail 
simulator, although in the absence of a collision-less SW plasma 
flow, while Funaki et al. [37–39] designed a laboratory simulator 
in a space chamber with a diameter of 2 m, in which a high-
power magnetoplasmadynamic arcjet was operated to provide a 
high-speed hydrogen plasma plume. Later, Ueno et al. [40] used 
a magnetoplasmadynamic arcjet to produce a plasma flow sim-
ulating the SW and conducted direct thrust measurements by a 
parallelogram-pendulum method. Kajimura et al. [41] used labo-
ratory experiments to check the agreement between the results 
from three-dimensional hybrid PIC simulations and those from ex-
perimental tests, when the simulations are carried out by consid-
ering the ion-neutral collision effect. By simulating the SW with 
a plasma jet, Oshio et al. [42] found that the thrust level changes 
quickly in response to SW fluctuations. Nagasaki et al. [43] fabri-
cated a double-pancake coil using a Bi-2223/Ag tape with a length 
of 200 m as a scale-down model for a MagSail and measured the 
current transport property and temperature rise during current ap-
plications of the HTS coil in a conduction-cooled system. Finally, 
Murayama et al. [21] developed a multi-coil MagSail consisting of 
3

three small conducting coils in order to improve its efficiency in 
capturing the SW.

1.2. MagSail-based mission scenarios and the contribution of this work

Several potential mission scenarios exist in which a MagSail-
based spacecraft might be usefully employed. For example, Shah 
[44] suggested to use a MagSail to perform transfers from the 
Earth to the Moon, while Love and Andrews [45] proposed to use a 
MagSail for the inspection of an asteroid, for the orbital correction 
of spacecraft in unstable libration points or near planets with mag-
netic fields, and for aerobraking purposes in planetary ionospheres. 
In addition, Andrews [46] identified the MagSail as a near-term 
technology suitable for interstellar travels.

About ten years ago, collecting the results from the theoreti-
cal analyses conducted by Zubrin and Andrews [19], the numerical 
simulations carried out by Kajimura et al. [28], and the exper-
imental tests performed by Nishida and Funaki [30], Quarta et 
al. [47] proposed a simple MagSail thrust model, which was em-
ployed to investigate minimum-time orbital transfers and locally 
optimal escape trajectories from the Solar System. The same thrust 
model was recently used to analyze displaced non-Keplerian orbits 
around the Sun [48] and tight spiral trajectories through an ana-
lytical (approximate) approach [49]. Finally, Perakis and Hein [50]
suggested to combine a MagSail (which is more effective at high 
inertial velocities) and an electric solar wind sail [51–53] (which 
has better performance at low speeds) for interstellar deceleration, 
while Perakis [54] showed that a change in the orbital inclination 
can be achieved with a single-coil MagSail through a bang-bang 
control of the pitch angle.

The aim of this study is to update the thrust model devel-
oped by Quarta et al. [47] by means of the results obtained in 
the last decade. More precisely, this paper presents an up-to-date 
thrust model for a Single-Loop MagSail (SiLM) and exploits it in 
the analysis of minimum-time heliocentric transfer trajectories. In 
particular, the new SiLM thrust model is used to study the time-
optimal transfer between two circular and coplanar heliocentric 
orbits [55,56]. To that end, the optimal control law for a SiLM is 
first determined numerically, then, circle-to-circle Earth-Venus and 
Earth-Mars transfers for a MagSail-based spacecraft are analyzed 
using an indirect method [57–59]. Using a simplified spacecraft 
mass breakdown model, the minimum flight times are estimated, 
for a given value of the payload mass fraction, as a function of the 
coil radius, to which the propulsive acceleration is directly propor-
tional.

The remainder of the paper is organized as follows. Section 2
models the SiLM performance with a particle method and ana-
lyzes the thrust as a function of the Sun-spacecraft distance, the 
superconducting coil radius, the electric current, and the SW speed 
relative to the spacecraft. Section 3 derives the thrust vector com-
ponents in a radial-transverse-normal reference frame, while the 
propulsive acceleration vector (related to the thrust through the 
total mass of the spacecraft) is calculated in Section 4. The op-
timal control law is analyzed in Section 5, where the necessary 
conditions for optimality according to the Pontryagin’s maximum 
principle are illustrated in the case of a circle-to-circle transfer. 
Section 6 evaluates, as a function of the coil radius, the minimum 
flight time in two typical interplanetary transfers. Finally, the last 
section contains the concluding remarks.

2. MagSail performance evaluation through particle method

This section analyzes the propulsive performance of a reference 
SiLM configuration (superscript ref) using a particle method. The 
details of the reference SiLM used in the numerical simulations 



M. Bassetto, N. Perakis, A.A. Quarta et al. Aerospace Science and Technology 133 (2023) 108113
Table 1
Reference SiLM configuration 
used in the numerical simula-
tions.

Parameter Value

Rref 100 m
Iref 105 A
nref

p 2 × 107 m−3

vref
SW 5 × 105 m/s

Fig. 2. Sketch of TXYZ reference frame, where the unit vector ĵ enters the sheet.

are reported in Table 1, where the parameters {R, I, np, vSW} rep-
resent the (single) coil radius, electric current, particle density, and 
SW speed relative to the spacecraft, respectively. Note that nref

p

refers to the reference distance from the Sun rref � 0.5 au.
The thrust vector components of the reference SiLM are ob-

tained in an orbital reference frame TXYZ(S; î, ĵ, k̂), with its origin 
at the spacecraft center of mass S and unit vectors {î, ĵ, k̂}; see 
Fig. 2. The latter are related to the radial (i.e., Sun-spacecraft) unit 
vector r̂ and to the MDM vector m as

î � cosα r̂ − m̂

sinα
, ĵ � m̂ × r̂

sinα
, k̂ � r̂ (1)

where m̂ � m/ ‖m‖, and α ∈ [0, π ] rad is the incidence angle, de-
fined as the angle between the directions of m̂ and r̂, viz.

α � arccos
(
m̂ · r̂

)
(2)

Note that the unit vectors {î, ̂j} are not defined when sinα = 0, 
that is, when the direction of m̂ is parallel to that of r̂ .

Fig. 3 summarizes the results of the numerical simulations ob-
tained with the reference SiLM and, in particular, how the thrust 
components

F ref
x � F ref · î , F ref

y � F ref · ĵ , F ref
z � F ref · k̂ (3)

change with α, where F ref is the thrust vector of the reference 
SiLM. Note that the (discrete) data of the numerical simulations 
relating to each thrust component have been connected with a 
polygonal chain to facilitate the understanding of the figure itself.

Starting from the simulation results relative to the refer-
ence SiLM, it is useful to investigate how the thrust compo-
nents {Fx, F y, F z} scale with the particle density np (or the Sun-
spacecraft distance r), the coil radius R , the electric current I , and 
the SW speed vSW. Since the thrust magnitude F is proportional 
to np (and np is inversely proportional to r2), it turns out that

F ∝
(

rref

r

)2

(4)

In addition, the thrust magnitude is directly proportional to the 
sail area, therefore

F ∝
(

R
ref

)2

(5)

R

4

Fig. 3. Thrust components in the reference SiLM.

More complex is the variation of F with I and vSW, which can be 
modeled using the following expression

F ∝

⎡
⎢⎢⎢⎢⎣

ln

(
c I

vSW Ic

)

ln

(
c Iref

vref
SW Ic

)
⎤
⎥⎥⎥⎥⎦

n

(6)

where c is the speed of light, Ic � 1.303 × 106 A is a critical 
current [35], and n � 3.347. Note that the thrust magnitude in-
creases with I and decreases with vSW. The latter behavior is ex-
plained by the fact that, due to their higher speed, the solar wind 
particles spend less time in the presence of a sufficiently strong 
magnetic field and, as such, they interact with it minimally [54]. 
Using Eqs. (4)–(6), the following variation of the thrust vector with 
{r, R, I, vSW} is obtained

F = F ref

(
rref

r

)2 (
R

Rref

)2

⎡
⎢⎢⎢⎢⎣

ln

(
c I

vSW Ic

)

ln

(
c Iref

vref
SW Ic

)
⎤
⎥⎥⎥⎥⎦

n

(7)

3. Thrust vector components in TRTN

Starting from the previous numerical results, this section de-
scribes the thrust vector components in a radial-transverse-normal 
reference frame TRTN(S; r̂, t̂, n̂) of origin S , where the unit vectors 
{r̂, t̂, n̂} are defined through the inertial spacecraft position r and 
the velocity vector v as

r̂ � r

r
, t̂ � v̂ − sinγ r̂

cosγ
, n̂ � r̂ × t̂ ≡ r̂ × v̂

cosγ
(8)

where r � ‖r‖ is the Sun-spacecraft distance, v̂ � v/ ‖v‖ is the ve-
locity direction, and γ ∈ [−π/2, π/2] rad is the flight path angle, 
that is, the angle between v and the local horizontal plane, viz.

γ � arctan

(
r̂ · v̂∥∥r̂ × v̂

∥∥
)

(9)

In order to express the components of F in TRTN as a func-
tion of {Fx, F y, F z}, it is necessary to introduce a new angle, here 
referred to as “clock angle” and indicated with δ ∈ [0, 2 π) rad, 
which represents the angle between the projection of m̂ on the 
local horizontal plane and the transverse unit vector t̂ , that is
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Fig. 4. Clock angle δ as a function of α when Fn = 0.

sin δ � m̂ · n̂

sinα
, cos δ � m̂ · t̂

sinα
(10)

The rotation matrix TXYZ→RTN from TXYZ to TRTN is given by

TXYZ→RTN =

⎡
⎢⎢⎣

0 0 1

− cos δ sin δ 0

− sin δ − cos δ 0

⎤
⎥⎥⎦ (11)

and the components {Fr , Ft , Fn} of the thrust vector F in TRTN, 
defined as

Fr � F · r̂ , Ft � F · t̂ , Fn � F · n̂ (12)

are given by

Fr = F z (13)

Ft = −Fx cos δ + F y sin δ (14)

Fn = −Fx sin δ − F y cos δ (15)

3.1. Two-dimensional transfers

In case of a two-dimensional transfer, the normal component of 
the thrust is equal to zero, that is, Fn = 0. This situation constrains 
the value of δ, which now takes only two values corresponding to 
angles differing by 180 deg, that is

δ = atan2
(∓F y, ±F z

)
(16)

and δ depends on α as reported in Fig. 4.
In this case let αt ∈ [−π/2, π/2] rad be the thrust angle, that 

is, the angle between the thrust vector and the radial direction, 
defined as

αt = arctan

(
Ft

Fr

)
(17)

which is positive (or negative) when F · v > 0 (or F · v < 0). Note 
that the special situation when Ft = 0 corresponds to a purely ra-

dial thrust. The thrust magnitude F ≡
√

F 2
r + F 2

t and the thrust 
angle αt of the reference SiLM are plotted, as a function of α, in 
Fig. 5 when Fn = 0. Each value of α corresponds to a single value 
of F and to two opposite values of αt , and Fig. 5 shows that the 
reference SiLM can generate a maximum (or minimum) thrust an-
gle of about 25 deg (or −25 deg).
5

Fig. 5. Reference SiLM: thrust magnitude F and thrust angle αt as a function of α
when Fn = 0.

4. Propulsive acceleration vector

This section provides the expression of the propulsive acceler-
ation vector a, equal to the ratio of the thrust vector F to the 
total spacecraft mass mtot, the latter being estimated with a suit-
able mass breakdown model. Following Ref. [60], the mass of the 
SiLM is related to the (single) coil mass mcoil as

msail = 3.75 mcoil (18)

where, according to Zubrin and Andrews [19], mcoil depends on the 
sail radius R , the coil mass density ρ , the electric current I , and 
the current density j as

mcoil = 2π R ρ I/ j (19)

Taking Eqs. (18) and (19) into account, the total spacecraft mass is 
then given by

mtot = mpay + 3.75 mcoil ≡ mpay + k R I (20)

where mpay is the payload mass, while k � 7.5 π ρ/ j is approxi-
mately equal to 1.5 × 10−5 kg/m/A assuming that ρ = 6315 kg/m3

(the density of copper(II) oxide [54]) and j = 1010 A/m2 [61,62]. 
An equivalent expression of the payload mass is written in the 
form

mpay = f mtot (21)

where f ∈ (0, 1) is the dimensionless fraction of the total mass. 
Substituting Eq. (21) into Eq. (20), the total spacecraft mass is 
given by

mtot = k R I

1 − f
(22)

Bearing in mind Eq. (7), the following relationship of proportion-
ality between the propulsive acceleration magnitude a � ‖a‖ and 
{r, R, I, vSW, f } holds

a ∝
R

[
ln

(
c I

vSW Ic

)]n

(1 − f )

2
(23)
r I
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In other terms, the propulsive acceleration magnitude turns out to 
be directly proportional to R and inversely proportional to r2, to 
decrease linearly with f , and to decrease with vSW. Recall that 
vSW is affected not only by the SW fluctuations, but also by the 
spacecraft radial velocity. As far as the dependence of a on I is 
concerned, the propulsive acceleration magnitude is maximized 

with respect to I by maximizing the function 
[

ln

(
c I

vSW Ic

)]n

/I , 

that is, when

I = I � exp(n) vSW Ic

c
(24)

which is approximately equal to 6 × 104 A when vSW ≡ vref
SW. Note 

also that I is directly proportional to vSW.
The propulsive acceleration vector is given by

a = τ (1 − f )

k R I

(
rref

r

)2 (
R

Rref

)2

⎡
⎢⎢⎢⎢⎣

ln

(
c I

vSW Ic

)

ln

(
c Iref

vref
SW Ic

)
⎤
⎥⎥⎥⎥⎦

n

F ref (25)

where the switching parameter τ ∈ {0, 1} is here introduced to ac-
count for possible coasting phases (case of τ = 0) in the spacecraft 
trajectory. The components of a in TRTN are

ar � a · r̂ , at � a · t̂ , an � a · n̂ (26)

Neglecting the SW fluctuations and observing that, usually, 
∣∣v · r̂

∣∣�
vSW, it is reasonable to assume that vSW � vref

SW. Moreover, by set-
ting I = I , Eq. (25) becomes

a = τ K R (1 − f )

r2
F ref (27)

where K � 3.9 × 1017 m/kg. In summary, Eq. (27) represents the 
propulsive acceleration vector of a SiLM-based spacecraft when 
ρ = 6315 kg/m3, j = 1010 A/m2, vSW � vref

SW, and I = I . In this 
case, the design parameters reduce to R and f only. Note that, by 
suitably increasing the sail radius R , it is possible to increase the 
payload mass fraction f while keeping the propulsive acceleration 
fixed. Of course, this leads to an increase in the total spacecraft 
mass mtot.

5. Optimal control law and trajectory optimization

For given values of R and f , the first step in the search 
for minimum-time trajectories is the evaluation of the triplet 
{α�, δ�, τ �} that maximizes the projection of the propulsive accel-
eration vector a along a prescribed direction. In this preliminary 
study, we assume that the SiLM performs a minimum-time trans-
fer between two (heliocentric) circular coplanar orbits.

In this case, the value of δ� is constrained by Eq. (16) and, 
accordingly, {α�

t , τ �} become the controls to be found in an opti-
mal manner [63]. When dealing with coplanar transfers, a generic 
direction may be described by a two-dimensional unit vector d̂, 
defined as

d̂ � cosαd r̂ + sinαd t̂ (28)

where αd ∈ [−π, π ] rad is the angle between d̂ and r̂; see Fig. 6. 
Note that αd ≥ 0 if d̂ · t̂ ≥ 0, while αd < 0 if d̂ · t̂ < 0.

The problem of maximizing the projection of a along d̂
amounts to maximizing the scalar product between a and d̂. To 
that end, consider the cost function J = J (αt , τ ), defined as

J � a · d̂ = ar cosαd + at sinαd (29)
6

Fig. 6. Sketch of unit vector d̂.

Fig. 7. Variation of max ( J ) with αd when f = 0.5.

The maximum of J is shown in Fig. 7 as a function of αd , for 
the reference SiLM, when f = 0.5. Note that the graph shown 
in Fig. 7 is smooth because J depends on the (continuous) vari-
able αd (see Eq. (29)) and no interpolation is performed. Accord-
ing to Eqs. (18)–(20), mtot � 298 kg. In particular, the fact that 
max ( J ) = 0 when |αd| > 115 deg means that, in those cases, the 
projection of a along d̂ is maximized by switching the SiLM off, 
that is, by setting τ = 0. The optimal control parameters α�

t and 
τ � are shown in Fig. 8 as a function of αd . Note that the step-wise 
nature of the curve is due to the use of discrete data taken from 
the simulations, which have not been interpolated. Of course, the 
curve can be made smoother by setting a larger number of dis-
crete points. However, a not too refined thrust model is already 
adequate for preliminary mission analysis purposes, that is, to es-
timate the flight times required to perform an orbital transfer as a 
function of the conducting coil radius.

A heliocentric polar reference frame T�(O ; r, ϕ) is now in-
troduced, whose origin O coincides with the center of mass of 
the Sun (with gravitational parameter μ�) and ϕ is the polar 
angle measured from the Sun-spacecraft line at the initial time 
t = t0 � 0; see Fig. 9. The SiLM trajectory is analyzed in an optimal 
framework by minimizing the flight time t f required to transfer 
the spacecraft from a circular parking orbit of radius r0 to a copla-
nar target orbit of given radius r f �= r0. The optimization problem 
consists in finding the optimal controls αt = α�

t (t) and τ = τ �(t)
that maximize the performance index

J � −t f (30)

subject to the nonlinear dynamics⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t) = f (x(t), αt(t), τ (t))

x(0) = x0

e(x(t )) = 0

(31)
f
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Fig. 8. Optimal controls α�
t and τ � as a function of αd .

Fig. 9. Sketch of the heliocentric polar reference frame.

where

x � [r ϕ vr vt]T (32)

is the state vector, vr � v · r̂ is the radial component of the space-
craft velocity and vt � v · t̂ is the transversal component of the 
spacecraft velocity, while

x0 �

⎡
⎢⎢⎢⎣

r0

0

0
√

μ�/r0

⎤
⎥⎥⎥⎦ , e(x(t f )) �

⎡
⎢⎣

r(t f ) − r f

vr(t f )

vt(t f ) − √
μ�/r f

⎤
⎥⎦ (33)

are the state vector at the initial time and the error vector at the 
(unknown) final time t f , respectively. Finally

f �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vr

vt

r

−μ�
r2

+ v2
t

r
+ ar

− vr vt

r
+ at

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

is the vector that describes the spacecraft dynamics.
The optimal (i.e., minimum-time) trajectory has been obtained 

with an indirect approach by enforcing the necessary conditions 
for optimality according to the Pontryagin’s maximum princi-
ple [58]. Given an optimal solution, there exists an absolutely 
continuous covector function λ and a covector ν that satisfy the 
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adjoint equations, the Hamiltonian maximization condition, the 
Hamiltonian value condition, the Hamiltonian evolution equation, 
and the transversality condition [58]. The Hamiltonian function H
and the Endpoint Lagrangian Ē are given by

H = λT f (x(t), αt(t), τ (t)) , Ē = −t f + νT e(x(t f )) (35)

where the covector

λ �
[
λr λϕ λvr λvt

]T (36)

is the vector of the adjoint variables {λr, λϕ, λvr , λvt } associated 
with the spacecraft states {r, ϕ, vr, vt}. The adjoint equations are

λ̇ = −∂ H

∂x
(37)

from which it turns out that λϕ is a constant of motion. Ac-
cording to the Pontryagin’s maximum principle, the Hamiltonian 
maximization condition amounts to maximizing, at any time, the 
Hamiltonian function with respect to the control variables. If

H � max
αt , τ

(H) (38)

the maximized Hamiltonian H is obtained by maximizing that 
portion of H (namely, Hc) that explicitly depends on the controls, 
or

Hc � λvr ar + λvt at (39)

The latter may also be rewritten as

Hc = λp (ar cosαλ + at sinαλ) (40)

where λp �
√

λ2
vr + λ2

vt is the magnitude of the primer vector λp �
[λvr λvt ]T [64], while the primer vector angle αλ ∈ [0, 2 π) rad is 
defined such that

cosαλ � λvr√
λ2

vr + λ2
vt

, sinαλ � λvt√
λ2

vr + λ2
vt

(41)

A comparison between Eqs. (29) and (40) demonstrates that the 
optimal control law is that shown in Fig. 8 by formally substituting 
αd with αλ . The Hamiltonian value condition provides the value of 
H at the final time t f , given by

H(λ(t f ), x(t f )) = − ∂ Ē

∂t f
≡ 1 (42)

Furthermore, the following Hamiltonian evolution equation holds

dH
dt

= ∂ H

∂t
≡ 0 (43)

from which it turns out that the maximized Hamiltonian is a con-
stant of motion. Bearing in mind Eq. (42), we obtain

H(t) ≡ 1 (44)

which plays a key role in the verification and validation of the 
computed numerical solution. Finally, the optimal solution satisfies 
the transversality condition, viz.

λ(t f ) = ∂ Ē

∂x(t f )
(45)

from which, using Eqs. (37), it is found that λϕ(t) ≡ 0.
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Fig. 10. Variation of mtot with R when f = 0.8.

Fig. 11. Variation of t f and max(a) with R when f = 0.8.

6. Case study and numerical simulations

The proposed mathematical model is now used to analyze 
a set of minimum-time circle-to-circle interplanetary transfers. 
The spacecraft dynamics (31) has been integrated in double pre-
cision using a variable order Adams-Bashforth-Moulton solver 
scheme [65] with absolute and relative errors equal to 10−12. 
For exemplary purposes, the SiLM parking orbit is assumed to be 
circular with radius r0 = r⊕ � 1 au. Such a choice describes the sit-
8

Fig. 12. Transfer trajectories in the Earth-Venus and Earth-Mars scenarios when f =
0.8.

uation in which a SiLM leaves the sphere of influence of the Earth 
on a parabolic escape trajectory, with the simplifying assumption 
that the eccentricity of the Earth’s heliocentric orbit is zero.

It is also assumed that the radius of the target orbit is r f =
0.723 au (or r f = 1.524 au), so that the simulations are consistent 
with an ephemeris-free Earth-Venus (or Earth-Mars) transfer, when 
the eccentricity and the mutual inclination between the planetary 
orbits are both neglected. Assuming that the SiLM system takes 
only 20% of the total spacecraft mass (i.e., f = 0.8), the minimum 
flight time t f is sought by varying the sail radius within the inter-
val R ∈ [10, 100] km. In this case, the total mass changes with R
as illustrated in Fig. 10.

Fig. 11 shows the obtained results for the two mission scenarios 
in terms of minimum flight time and maximum propulsive acceler-
ation generated by the SiLM during the interplanetary transfer. In 
particular, Fig. 11(a) shows that t f rapidly increases when R < 30
km, whereas Fig. 11(b) shows that this happens when R < 35 km. 
Finally, Fig. 12 shows the transfer trajectories related to the two 
cases when R = 10 km and R = 100 km, while Fig. 13 shows 
the corresponding optimal control parameters. Notably, |α�

t | � 25
deg in most of the transfer when R = 10 km (i.e., in case of a 
low-performance SiLM), while the optimal transfer trajectory is 
characterized by long coasting phases when R = 100 km (i.e., for a 
medium/high-performance SiLM). Finally note that the flight times 
may be further reduced if we considered a greater number of 
discrete data from the simulations; see Fig. 3. Nevertheless, the 
reduction in flight times can be expected to be not significant, es-
pecially for a low-performance SiLM, when the value of |α�

t | is the 
maximum admissible for most of the transfer.
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Fig. 13. Optimal thrust angle α�
t and switching parameter τ � as a function of time 

in the Earth-Venus and Earth-Mars cases when f = 0.8.

7. Conclusions

This study has discussed an up-to-date mathematical model 
describing the propulsive acceleration vector provided by a single-
loop MagSail and to exploit it in the analysis of minimum-time 
heliocentric transfer trajectories. A particle method has been ini-
tially chosen to evaluate the propulsive performance of a reference 
single-loop MagSail configuration. Then, the scaling relationships 
have been used to determine the single-loop MagSail performance 
as a function of suitable design parameters such as the coil ra-
dius. The proposed thrust model can be easily implemented in a 
simulation code for trajectory optimization and, in this sense, it 
represents an effective tool for preliminary mission analysis.

The resulting propulsive acceleration (related to the thrust 
through the total mass of the spacecraft) has been used in the 
analysis of minimum-time transfer trajectories between two circu-
lar heliocentric orbits using an indirect approach. The minimum 
flight times required to perform ephemeris-free Earth-Venus and 
Earth-Mars transfers have been calculated as a function of the coil 
radius by assuming a given value of the payload mass fraction. The 
numerical simulations have shown that the minimum flight time 
is less than one year when the coil radius is greater than 25 km in 
case of Earth-Venus transfers, and it is less than two years when 
the coil radius is greater than 30 km in case of Earth-Mars trans-
fers.
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