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Symbols

Isp Specific impulse [s]

ṁ Mass flow rate [kg/s]

F Thrust [N]

g0 Gravity acceleration
[
m/s2

]
τe Confinement time [s]

W Volumetric plasma energy
[
J/m3

]
Ploss Volumetric plasma energy loss rate

[
W/m3

]
n Plasma number density

[
m−3

]
kB Boltzmann’s constant [J/K]

T Temperature [K]

σ Reaction cross section
[
m2
]

v Velocity magnitude [m/s]

v Velocity vector [m/s]

Ech Energy of reaction products [J]

G Fusion energy gain [−]

Efusion Power produced in fusion [W]

Eheat External power input [W]

ηnozzle Efficiency of nozzle [−]

ρ Density
[
kg/m3

]
vx Velocity along x direction [m/s]

vy Velocity along y direction [m/s]

V Volume
[
m3
]

U Vector of conservative variables

F a Advection flux

Ẽ Total volume specific energy of fluid
[
J/m3
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J/m3
]
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[
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k Wave vector
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]
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[
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A Area
[
m2
]
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Abstract

The goal of this thesis is to evaluate the model of ideal MHD for the simula-
tion of plasma flows in fusion plasma thrusters. A fusion plasma thruster is a
propulsion system based on the deflection of ionized fusion products within a
strong external magnetic field.

The necessity for shorter durations of inteplanetary and interstellar missions
renders the concept of fusion thrusters attractive due to their high specific
impulse. Interstellar missions using fusion thrusters based on the concept of
inertial confinement as their main propulsion system are being desgined by the
ICARUS project. In order to evaluate the performance of these engines and to
optimize their thrust to weight ratio, different modeling techniques have been
used in previous studies, involving particle or fluid descriptions of the engine
plasma.

In this work, the plasma flow is modeled with the ideal MHD equations. The
solution exhibits strong shock fronts and therefore the simulations are carried
out with a Finite Volume method. The difference of the MHD model to other
modeling techniques will be investigated.

The spatial scales of the ignition process of the inertial fusion are too small
to be simulated directly, and therefore adequate initial conditions from an ex-
panded state are necessary to start the MHD simulation. An overview of the
inertial confinement fusion process is given and macroscopic initial conditions
are derived via energy considerations. After modifying the initial conditions in
order to incorporate them into the ideal MHD formulation, the expansion of the
plasma in the absence of the magnetic field is examined. Upon identification of
the critical points, simulations with a constant magnetic field are included, to
evaluate the interaction of the expanding plasma and an external field. Finally,
the field produced by electromagnetic coils is modeled and applied to the sim-
ulation. Numerical instabilities are encountered due to the strong coupling of
the plasma motion with gas dynamic phenomena, which leads to shocks with
high intensity, at the high velocities needed for plasma thrusters.
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1. Introduction

1.1. Overview of Space Propulsion

The main idea behind propulsion systems lies in the acceleration of an exhaust
mass, in order to impart a force onto the engine, which according to Newton’s
third law is directed opposite to the flow of the ejected mass. The main physical
entities which characterize the thrust of the propulsion system are the mass flow
rate of the propellant ṁ and its effective exhaust velocity ve. The thrust is
defined as:

F = ṁve (1.1)

Another equivalent formulation of the thrust, involves the specific impulse Isp
instead of the exhaust velocity. This is defined as the total impulse per unit
weight of propellant.

Isp =

∫
ṁvedt∫
ṁg0dt

=
ve
g0

(1.2)

g0 stands for the acceleration of gravity on the surface of the earth. Hence the
thrust can be re-defined as

F = ṁIspg0 (1.3)

Mankind’s space propulsion options are mainly based on chemical engines,
which take advantage of the fuel’s reaction enthalpy during chemical combus-
tion. With the excess energy, the propellant (which can initially be either in
solid, liquid or gaseous form) is accelerated through a nozzle, where its ther-
mal energy is transformed to kinetic one. According to Newton’s third law, an
impulse is imparted onto the rocket engine, which is therefore propelled in the
opposite direction of the exhaust mass. Although these conventional rockets
have been proven to be reliable and effective for missions in the vicinity of the
earth, their main disadvantage (low specific impulse) is evident for missions
deeper into the solar system [32]. An example of a launcher system based on

1



1. Introduction

Figure 1.1.: Lift-off of Ariane 5 rocket (Image from: www.esa.int)

chemical propulsion is Europe’s Ariane 5 as shown during lift-off in Fig. 1.1

More efficient methods of propulsion involve electromagnetic thrusters. By ac-
celerating ions with electromagnetic fields, high exhaust speeds can be achieved,
but the resulting thrust is limited mainly due to repulsive Coulomb potential
between the ions. Several interplanetary missions, like NASA’s Dawn mis-
sion to the asteroid Ceres [24], have used state of the art electric propulsion
engines, allowing orbits of higher energies to be reached via low thrust ma-
neuvers. Fig. 1.2 shows the NSTAR engine on board of the Dawn spacecraft
during operation.

An overview of different propulsion mechanisms and their performance charac-
teristics can be given in [32]. The propulsion systems with the highest Tech-
nology Readiness Level are presented in Fig. 1.3.

2



1.1. Overview of Space Propulsion

Figure 1.2.: Dawn spcacraft’s NSTAR electrostatic ion thruster (Image from:
www.jpl.nasa.gov/)

Figure 1.3.: Overview of conventional space propulsion systems [32]

3



1. Introduction

1.2. Fusion Propulsion

With the prospect of reaching other solar systems within reasonable trip dura-
tions, alternative means of propulsion have to be used, which combine a high
thrust with a small fuel consumption (high specific impulse). The most promi-
nent candidate suitable for such a mission is fusion propulsion. A fusion rocket
is a theoretical design for a rocket driven by fusion power which could provide
efficient and long-term acceleration [15]. The design relies on the development
of fusion power technology, which currently exceeds the technological capabil-
ities of mankind.

1.2.1. Nuclear Fusion

Just like in the concept of nuclear fusion for power generation, fusion rockets
take advantage of the binding energy which is set free when two (or more)
atomic nuclei collide and join to form a new type of nucleus. The unconven-
tionally high specific impulse of these engines stems from the velocities of the
ions which result from the difference in binding energy between the initial and
the daughter nuclei.

Characteristically, the key reactions with the highest fusion cross sections in-
volve [18]:

2
1D + 3

1T→ 1
0n [14.07MeV] + 4

2He [3.52MeV] (1.4)

2
1D + 3

2He→ 1
1p [14.68MeV] + 4

2He [3.67MeV] (1.5)

2
1D + 2

1D→ 1
0n [2.45MeV] + 3

2He [0.82MeV] (50%)
2
1D + 2

1D→ 1
1p [3.02MeV] + 3

1T [1.01MeV] (50%)
(1.6)

1
1p + 11

5 B→ 3 4
2He [8.68MeV] (1.7)

The figures in brackets stand for the kinetic energies of the corresponding ions
after the fusion reaction. The cross section of these fusion reactions over a wide
energy range are given in Fig. 1.4. It can be observed that D-T fusion exhibits
the highest cross section.

4



1.2. Fusion Propulsion

Figure 1.4.: Cross section of fusion reactions over ion temperature [13]

To sustain a fusion reaction, the plasma must be confined. The confinement
time τe represents the rate at which the system loses energy to its environment
and is given by:

τe =
W

Ploss
(1.8)

W stands for the energy density and Ploss measures the volumetric energy
loss of the plasma. A quantitative approach to the required conditions for
the plasma to reach sufficient confinement leading to an ignition is given by
Lawson’s criterion [21]. This is a reformulation of the condition that fusion
heating should exceed the losses and combines the number density n of the
plasma and the confinement time to a figure of merit describing the ignition:

nτe ≥
12kBT

Ech 〈σv〉
(1.9)

In Eq. 1.9 kB stands for Boltzmann’s constant, T is the temperature, Ech the
energy of the reaction products that can heat up the plasma (neutrons are not
included), σ the cross section of the reaction and v the relative velocity of the
parent nuclei. The notation 〈σv〉 is used for the average of the product σv.

5



1. Introduction

A further useful figure is the fusion triple product [18], which poses an ex-
tension of the Lawson criterion. In this case, the inequality also contains the
temperature, leading to

nτeT ≥
12kBT

2

Ech 〈σv〉
(1.10)

The theoretical triple product condition for the different fusion reactions is
illustrated in Fig. 1.5 for a range of temperatures.

Figure 1.5.: Triple product as a function of temperature for the D-T, D-D ,
D-He3 reactions [13]

An important figure for the efficiency of the plasma reactor is the fusion energy
gain G. This corresponds to the ratio of fusion power produced in a nuclear
fusion reactor Pfusion to the heating power required to maintain the plasma in
steady state Pheat.

G =
Pfusion
Pheat

(1.11)

The goal of ignition corresponds to a plasma which can heat itself by fusion
energy without any external input, and can be described by Pheat = 0, namely
by G → ∞. Ignition is not a necessary condition for a practical reactor but

6



1.2. Fusion Propulsion

a value of G bigger than 5 is necessary since it means that the fusion heating
power is greater than the external heating power [39].

1.2.2. Fusion Confinement

The most widely studied configuration for terrestrial fusion is based on the
concept of magnetic confinement. The main representative of this concept are
tokamaks, devices in the shape of a torus, which use electromagnets in order to
confine the plasma. The stable plasma equilibrium is achieved with magnetic
field lines that move around the torus in a helical shape. Such a helical pattern
is obtained by the superposition of a toroidal field (created by superconducting
coils surrounding the torus) and a poloidal field orthogonal to it (resulting from
the ion flow in the plasma). Since the 1950s [31], when the idea of tokamaks
was introduced into the scientific community, a lot of research has been invested
into the development and improvement of its experimental setup, leading to an
exponential increase of the fusion triple product [18] over the years, analog to
Moore’s law [16]. This effect is demonstrated in Fig. 1.6.

An example of a tokamak engine is the ASDEX Upgrade located at the Max
Planck Institute of Plasma Physics in Garching which is illustrated in Fig. 1.7
[19].

The second advanced method of fusion confinement is the Inertial Confinement
Fusion (ICF). In this concept, the fuel is compressed into a pellet, which is then
irradiated with highly energetic laser light, electron or ion beams. Upon contact
with the incoming beam, the inner core is increased a thousandfold in density
and its temperature is driven upward to the ignition point for fusion [28].

As can be observed in Fig. 1.8, this process can be qualitatively split into
four sections. At first, the incoming energy flux evaporates the outer layer of
the pellet, producing energetic collisions which drive part of the pellet inward,
while the heated outer layer explodes outward. The inward moving wave leads
to a compression of the remainder of the target. A sufficiently powerful set of
shock waves can compress and heat the fuel at the center so much that fusion
reactions occur. The energy released by these reactions is capable of heating
the surrounding fuel causing it to undergo fusion as well. The process reaches
”ignition” when a chain reaction propagates through the biggest part of the
fuel pellet. Due to the small timescale of the process (0.01 − 1ns), the ions
do not move appreciably because of their own inertia; hence the name inertial

7



1. Introduction

Figure 1.6.: Triple product as a function of time in comparison to Moore’s
law [14]

confinement.

As of 2015, the largest operational ICF experiment is the National Ignition
Facility (NIF) located at the Lawrence Livermore National Laboratory in Liv-
ermore, California. [10]. An overview of the ignition chamber at the NIF is
given in Fig. 1.9. The energy source at the NIF is provided by a 500TW laser
system [40]. However, the energy is not delivered directly to the target, but
is directed inside a Hohlraum made of a material with a high atomic number.
Upon impact with the laser beam, the material of the Hohlraum ablates and
creates intense X-rays, which are the ones heating up the target. The reason
for the indirect drive is the fact that the target is irradiated isotropically by
the x-rays as shown in Fig. 1.10.

Other methods of confinement include Inertial Electrostatic Confinement (IEC)
[38], Magnetized Target Fusion (MTF) [41] and antimatter catalyzed fusion [7],
which will not be further described here.

8



1.2. Fusion Propulsion

Figure 1.7.: Inside view of the ASDEX Upgrade Tokamak at the Max
Planck Institute of Plasma Physics in Garching (Image from
www.ipp.mpg.de)

Figure 1.8.: Mechanism of Inertial Confinement Fusion

1.2.3. Fusion Propulsion Considerations

Despite the fact that gains close to 10 are projected by the beginning of the
2020 [14] decade during the operation of the ITER tokamak [16], the big masses
associated with the magnetic confinement devices lead to low thrust to weight
ratios. The main alternative to magnetic confinement is ICF, such as that
proposed by Project Daedalus and Project ICARUS [1], [23]. A small pellet of
fusion fuel (with a diameter of a couple of millimeters) would be ignited by an
electron beam or a laser. Unlike Project Orion (where a pusher plate absorbs
the kinetic energy of the fusion products) [11], to produce direct thrust a mag-
netic field would direct the created ions towards the outlet, thereby imparting

9



1. Introduction

Figure 1.9.: The inside of the ignition chamber at the National Ignition Facility
(Image from www.extremetech.com)

Figure 1.10.: Animation of the indirect ICF method using a Hohlraum (Image
from www.llnl.gov)

part of their impulse on the spacecraft structure. In the 1980s, Lawrence Liv-
ermore National Laboratory and NASA studied an ICF-powered ”Vehicle for
Interplanetary Transport Applications” (VISTA). The conical VISTA space-
craft could deliver a 100-ton payload to Mars orbit and return to Earth in 130
days, or to Jupiter orbit and back in 403 days. Its operating principle is based
on the fusion of deuterium/tritium (D-T).

10



1.2. Fusion Propulsion

1.2.4. Magnetic Nozzle

One of the most important characteristics of the ICF propulsion concept lies
in the design of the magnetic nozzle system, which ensures the production of
direct thrust. The idea of using magnetic fields for thrust application in fusion
rockets was first introduced by R. A. Hyde [15]. The configuration of the coils
ensures that the plasma flow, channeled by the diverging magnetic lines, ex-
pands supersonically in a similar way to a hot gas in a solid nozzle [4]. This
operating principle is illustrated in Fig. 1.11 .

Figure 1.11.: Operating principle of magnetic nozzle [30]

The efficiency of a magnetic nozzle, ηnozzle , is defined as the fraction of the
ion impulse that departs the nozzle in the desired direction compared to the
total plasma impulse. Assuming a desired thrust direction along the x-axis,
then the nozzle efficiency becomes:

11



1. Introduction

ηnozzle =

∫
ρvxdV∫
ρ |v| dV

(1.12)

In Eq. 1.12, ρ stands for the density of the plasma, vx for the velocity along
the x direction and |v| for the magnitude of the velocity, while the integration
takes place over the volume V .

Several approaches have been taken for the calculation of the nozzle efficiency
and the plasma flow inside the magnetic nozzle after ignition. R. A. Hyde
based his work on a 2D Magntohydrodynamics (MHD) code, which produced
values close to 65 % for the thrust efficiency in a single coil nozzle. In their
works, Nagamine et al. [27] and Kawasaki et al. [35] combined MHD with a
Cubic Interpolation Pseudoparticle (CIP) scheme, and produced time depen-
dent results for the nozzle efficiency.

Kawabuchi [30] and Vchivkov [37] relied on a Particle in Cell Method to calcu-
late the plasma flow for different coil configurations. Matsuda et al. [25] pro-
vided values close to 78% for the nozzle efficiency, while using a Smoothed Par-
ticle Hydrodynamics (SPH) code [34]. Finally, different authors have simulated
the plasma flow using hybrid methods. Nagamine [27] and Kajimura [26], [42]
used 3D hybrid codes in order to simulate multiple coil configurations as well
as to obtain efficiencies for thrust angle variation techniques.

In the present work, an ideal MHD approach is taken in order to simulate the
behaviour of the plasma inside the magnetic nozzle. Although hybrid and Par-
ticle In Cell (PIC) codes have demonstrated useful results for a variety of nozzle
geometries, it is considered interesting to observe whether some hydrodynamic
effects are being ignored by these methods, which can still be captured using
MHD. Since ideal MHD represents the simplest possible form of modeling (due
to the fact that resistive and viscous terms are neglected), it is of interesting
to observe what effects this simplification induces in the modeling of magnetic
nozzle flows. For this purpose a comparison with the different techniques used
in literature can be obtained, leading to the identification of the advantages
and disadvantages related to ideal MHD. In order to reduce the computational
effort, a two-dimensional (2D) approach was followed for the simulation of the
plasma expansion.

12



2. Modeling and Numerics

2.1. Magnetohydrodynamics

Magnetohydrodynamics represents the study of the magnetic properties of elec-
trically conducting fluids. The fundamental concept behind MHD is the cou-
pling between a hydrodynamic flow and the presence of magnetic fields. Ex-
ternal fields can induce currents in a moving conductive fluid, which in turn
polarizes the fluid and reciprocally changes the magnetic field itself. The set of
equations that describe MHD are a combination of the Navier-Stokes equations
of fluid dynamics and Maxwell’s equations of electromagnetism.

We will restrict ourselves to the ideal MHD equations, which represent the
simplest form of MHD. Ideal MHD assumes that the fluid has so little resis-
tivity that it can be treated as a perfect conductor. In addition to the perfect
conductivity, the analogy to the inviscid flow in fluid dynamics (Euler equa-
tions) applies in the case of ideal MHD, leading to the absence of viscous fluxes.

In order for the ideal MHD to hold, several conditions have to be met for the
plasma system. The plasma has to be strongly collisional, so that the time scale
of collisions is shorter than the other characteristic times in the system. This
leads to the particle distributions being close to Maxwellian. The resistivity
induced by these collisions has to be small and specifically the typical magnetic
diffusion durations present in the system must be longer than any time scale
of interest. This way effects like the Landau damping can be neglected [6].
Finally, the results should be viewed with focus on macroscopic length scales
compared to the ion skin depth and the Larmor radius.

The conservation form of the ideal MHD equations can be written as

∂

∂t
U +∇ · F a(U) = S (2.1)

13



2. Modeling and Numerics

with the advection flux F a and the vector of conserved variables

U =


ρ

ρv

Ẽ
B

 = (ρ, ρv1, ρv2, ρv3, Ẽ , B1, B2, B3)T . (2.2)

The term v = (v1, v2, v3)T stands for the fluid velocity, whereas B = (B1, B2, B3)T

represents the magnetic field strength. Ẽ is the total volume specific energy of
the fluid. This comprises of three different terms, the thermodynamic energy
ET , the kinetic energy EK and the magnetic energy EM .

Ẽ = ET + EK + EM =
p

γ − 1
+

1

2
ρ|v|2 +

1

2

|B|2

µ0

(2.3)

γ is the heat capacity ratio (Poisson’s constant), µ0 the magnetic permeability
constant equal to 4π H

m
and p the thermodynamic pressure of the fluid. The

sum of thermodynamic and magnetic pressure is given by

p̃ = p+
1

2

|B|2

µ0

(2.4)

In the case where external sources are ignored (S = 0),the full equation system
[17] reads as :

∂

∂t
ρ = −∇ · (ρv) , (2.5)

∂

∂t
(ρv) = −∇ ·

(
ρvvT + p̃I − 1

µ0
BBT

)
, (2.6)

∂

∂t
Ẽ = −∇ ·

((
Ẽ + p̃

)
v − 1

µ0
B(B · v) +

1

µ2
0

((∇×B)×B

)
, (2.7)

∂

∂t
B = −∇ ·

(
vBT −BvT

)
. (2.8)

together with the divergence contraint

∇ ·B = 0 . (2.9)

The identity tensor is given by I. It is important to point out that the third

term in the impulse equation, ∇ · ( 1
µ0

BBT ) results from the Lorentz force due
to the interaction of the current density j and the magnetic field B

14



2.1. Magnetohydrodynamics

j ×B =
(∇×B)

µ0
×B . (2.10)

The advection flux becomes:

F a =


ρv

ρvvT + p̃I − 1
µ0

BBT(
Ẽ + p̃

)
v − 1

µ0
B(B · v)

vBT −BvT

 . (2.11)

2.1.1. MHD with external field

In the formulation described in Eq. 2.8, the total magnetic field in the plasma
is defined as time dependent and can undergo changes due to the induction
of internal fields due to the plasma movement. However, in the case of a
magnetic nozzle, the field created by the magnetic coils remains constant over
time and does not alter depending on the fluid induced field. For that reason,
a separation is required between the constant, external (background) field B0

and the flow induced field Bin. We follow the decomposition in [9] of the total
magnetic field B, in order to avoid numerical or physical damping of the strong
background field reads as:

B = B0 + Bin (2.12)

where ∂
∂t
B0 = 0 and ∇ · B0 = 0. Apart from the magnetic field, a change

in the update of the fluid energy is intoduced. Instead of computing the time
derivative of the total energy as in Eq. 2.7, the total perturbation energy Ẽin
is calculated as:

Ẽin =
p

γ − 1
+

1

2
ρ|v|2 +

1

2

|Bin|2

µ0
= Ẽ − 1

µ0

(
1

2
|B0|2 + B0 ·Bin

)
(2.13)

In a similar manner, the total perturbation pressure p̃in is given by:

p̃in = p+
1

2

|Bin|2

µ0

(2.14)
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2. Modeling and Numerics

Therefore, the conservation variables U are modified to

U =


ρ

ρv

Ẽin
Bin

 , (2.15)

whereas the advection flux F a is given by Eq. 2.16 [9].

F a =


ρv

ρvvT + p̃I − 1
µ0

BBT − 1
µ0

(
1
2
|B0|2I −B0B

T
0

)(
Ẽin + p̃in

)
v − 1

µ0
(B(B1 · v)− v(B0 ·B1))

vBT −BvT

 . (2.16)

Apart from this hyperbolic flux, an additional source term is added to the
energy equation and reads as

S =
1

µ0
(B × v) · (∇×B0) (2.17)

However, in the case of stationary external fields like the ones examined in this
work, the rotation of B0 remains equal to zero (∇ × B0 = 0) and therefore,
this source term will not be included.

2.1.2. Waves in MHD

MHD is a fluid theory and there are similar wave modes as in ordinary fluid
theory (hydrodynamics). In hydrodynamics the restoring forces for perturba-
tions are the pressure gradient and gravity. Also in MHD the pressure force
leads to acoustic fluctuations, whereas Lorentz’s force leads to a new class of
wave modes, called Alfvén (or MHD) waves [6]. Due to the basic assumption
of MHD that changes of electric field E are slow, leading to ∂E/∂t ≈ 0, the
displacement current is neglected in the Ampere-Maxwell law and MHD is in-
capable of describing electromagnetic waves. Therefore, the MHD waves have
no direct connection to electromagnetic waves through the plasma.

The simplest wave mode propagating in a fluid is the sound wave, which travels
with the speed
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2.1. Magnetohydrodynamics

vS =

√
γp

ρ
(2.18)

through a medium with pressure p and density ρ. The sound wave is a prop-
agating pressure perturbation whose wave vector k is normal to the pressure
front.

For an intuitive understanding of the MHD waves, the nature of the Lorentz
force has to be examined. This force can be split into two components as shown
in [6], resulting to

j ×B = (B · ∇)
B

µ0
−∇

(
B2

2µ0

)
(2.19)

The second term in Eq. 2.19 acts on the fluid in the same way as the pressure

force −∇p and for that reason B2

2µ0
is called that magnetic pressure. The first

term can be written as

(B · ∇)
B

µ0
=

∂

∂s

(
B2

2µ0

)
et −

B2

µ0R
en (2.20)

Here s is now a coordinate measured along a magnetic field line, et and en are
unit vectors in the tangential and principal normal direction, respectively, and
R is the local radius of curvature of the field line.

Considering a flux tube as shown in Fig. 2.1, the force (B · ∇) B
µ0

can be inter-

preted as an effect produced by tensile stresses B2

µ0
acting on the ends of the

tube. The force can be then split into two components demonstrating that the
field lines are being in tension and exerting a pseudo-elastic stress on the fluid.

As described in [33] the MHD equations for impulse, mass continuity and
magnetic field lead to the existence of wave traveling through the conducting
plasma, leading to an oscillatory movement of its ions. The general dispersion
equation for plane waves of the form

v1(r, t) = v1exp [i(k · r − ωt)] (2.21)

with angular frequency ω is given by
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2. Modeling and Numerics

Figure 2.1.: Magnetic tension forces along a field line [6]

−ω2v1 + (v2A + v2S)(kTv1)k + (kTvA)
[
(kTvA)v1 − (vT1 vA)k − (kTv1)vA

]
= 0

(2.22)

vA is defined as the vector of the Alfven velocity with direction towards the
external magnetic field and magnitude equal to vA.

vA =

√
B2

ρµ0

(2.23)

The Alfven speed is a characteristic property in the MHD and represents the
ratio of the stress tension to the mass density as shown in Eq. 2.23.

For a propagation of the wave in an arbitrary angle θ with respect to vA and
hence to the magnetic field, three different wave modes can occur: 1) the pure
Alfven wave 2) the slow MHD wave 3) the fast MHD wave

The phase velocities as a function of the angle θ read out as:

vφ,Alfven = vA cos θ (2.24)

v2φ,slow =
1

2
(v2A + v2S)− 1

2

√
(v2A + v2S)2 − 4v2sv

2
A cos2 θ (2.25)

v2φ,fast =
1

2
(v2A + v2S) +

1

2

√
(v2A + v2S)2 − 4v2sv

2
A cos2 θ (2.26)
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2.1. Magnetohydrodynamics

All these waves have constant phase velocities for all frequencies, and hence
there is no dispersion. At the limits when the angle between the wave propa-
gation vector k and magnetic field B is either 0 or 90 degrees, the wave modes
obtain the names and properties described in Table 2.1.

Table 2.1.: MHD waves

Name Properties Phase velocity vφ

Sound wave k ‖ vA , k ‖ v1 vS
Alfven wave k ‖ vA , k⊥v1 vA
Magnetosonic wave k⊥vA , k ‖ v1 vM

Quantitatively, the restoring force for the Alfven wave propagation is the mag-
netic field tension. The existance of this wave mode is illustrated in Fig. 2.2. A
velocity perturbation leads to a curvation of the magnetic field lines and hence
to a restoring force which can surpass the inertia of the fluid and change its
direction of motion. The produced disturbance can then move along the field
line, leading to a wave oscillation with transversal nature.

Figure 2.2.: Perturbation of magnetic field line and restoring force [6]

In the direction perpendicular to B and the case of a magnetosonic wave, a
longitudal oscillation is made possible by the magnetic restoring force (magnetic
pressure). The propagation of this wave involves compression and rarefraction
of the magnetic lines as well as the plasma as illustrated in Fig. 2.3.
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2. Modeling and Numerics

Figure 2.3.: (Image from www.theory.physics.helsinki.fi) Magnetosonic wave
compressing and releasing the lines of force and the conducting
fluid perpendicularly to B

The propagation of this wave is given by

vM =
√
v2A + v2S (2.27)

A schematic overview of the phase velocity vφ = ω/k as a function of the angle
θ can be obtained in Fig. 2.4.

Figure 2.4.: Phase velocity as a function of the angle between wave vector and
magnetic field vector (Image from www.theory.physics.helsinki.fi)
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2.2. Finite Volume Methods

2.2. Finite Volume Methods

The solution of the MHD equations is implemented numerically, using a Finite
Volume Method (FVM). The solver Flexi [12], initially developed at the Insti-
tute for Aerodynamics and Gas Dynamics (IAG) of the University Stuttgart
was used during the present work.

Finite Volume Methods are used to represent and evaluate partial differential
equations (PDEs) in the form of algebraic equations. Just like in all numerical
schemes for the solution of PDEs, the values of the sought variables are calcu-
lated discretely on a discretized geometry. The starting point for the formula-
tion of the FVM is the integral form of the conservation laws for the variable U .

According to Eq. 2.1, an integration of the conservation form over the volume
Vi of a small cell leads to :∫

Vi

∂

∂t
UdV +

∫
Vi

∇ · F (U)dV =

∫
Vi

SdV (2.28)

By integrating the first term to get the volume average Ūi and by making use
of Gauss’ divergence theorem on the second integral term, one obtains:

Vi
dŪi
dt

+

∮
Ai

F(U)ndA = S̄iVi (2.29)

or equivalently:

dŪi
dt

+
1

Vi

∮
Ai

F(U)ndA = S̄i (2.30)

where Ai represents the total surface area of each cell, and n the normal unit
vector of the surface, directed outwards from the cell. The values for the
edge fluxes can be reconstructed by interpolation or extrapolation of the cell
averages. The idea of the FVM discretization and control volume consideration
is illustrated in Fig. 2.5.
In order to analyze the time discretization of Eq. 2.30, a one dimensional sim-
plification is carried out. Taking a cell at position xi and edges at xi−1/2 and
xi+1/2 and defining ∆x = xi+1/2 − xi−1/2 yields:

dŪ(xi, t)

dt
+

1

∆x

[
f(U(xi+1/2, t))− f(U(xi−1/2, t))

]
= S̄(xi, t) (2.31)
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Figure 2.5.: Finite Volume Method (Image from www.scielo.br)

In Eq. 2.31, f(U(xi+1/2, t)) − f(U(xi−1/2, t)) is the difference between the in-
coming and outgoing integrated fluxes through the edges of the control cell.
By introducing the time step n and the spatial coordinates as indices:(

dŪ

dt

)n
i

+
1

∆x
(fni+1/2 − fni−1/2) = S̄ni (2.32)

An illustration of this situation can be observed in Fig. 2.6.

Figure 2.6.: Finite Volumes Method time scheme

For the solution of the Ordinary Differential Equation (ODE) shown in Eq. 2.32
a Runge Kutta method of 3rd order was used.
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2.2. Finite Volume Methods

Moreover the Lax-Friedrichs (LF) flux is utilized for the solution of the re-
sulting Riemann problem [36], [22]. According to the general principle of a
Riemann solver, the evaluation of the integrated fluxes f(U(xi+1/2, t)) and
f(U(xi−1/2, t)) is a function g of the conservative variables Ui , Ui+1 and Ui−1.

f(U(xi±1/2, t)) = g(Ui, Ui±1, t) (2.33)

In the case of the LF method, this calculation takes the form in Eq. 2.34 and
Eq. 2.35 when a first order scheme is used.

f(U(xi+1/2, t)) =
1

2
(f(Ui, t) + f(Ui+1, t))− λmax(Ui − Ui+1) (2.34)

f(U(xi−1/2, t)) =
1

2
(f(Ui, t) + f(Ui−1, t))− λmax(Ui−1 − Ui) (2.35)

In this notation, λmax represents the highest wave speed resulting from the
states Ui−1 and Ui.

In this work, the first order FVM was employed, for stability and robustness
reasons, since strong shock fronts are part of the solution.
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3. Initialization

3.1. Conditions after Ignition

In the ICF concept, the confined fuel must reach high temperatures and den-
sities to produce enough thermonuclear reactions, so that the total energy re-
leased by the fusion reactions is much greater than the driver energy required
to compress the fuel. In the current direct-driven ICF applications, a cryogenic
deuterium and tritium spherical capsule filled with DT gas is accelerated in-
ward by direct laser irradiation [43]. In order to compress the fuel to the desired
temperature and density, the laser pulse starts by driving a shock through the
shell. As the shock propagates inside the shell, the laser power begins to rise
and subsequently launches a compression wave traveling inward. When the
shock and compression wave merge and break out on the inner shell surface,
an outward traveling rarefaction wave is launched from this surface due to the
density discontinuity at the shell and gas interface. Once the rarefaction wave
breaks out, the shell outer surface senses the lower pressure and accelerates
inward under the pressure of the laser driver. This marks the onset of the
acceleration phase, during which the shell accelerates to a high implosion ve-
locity. The acceleration phase ends when the laser is turned off and the shell
starts traveling at an approximately constant implosion velocity.

The deceleration phase starts when the inward traveling shock reflects off the
center of the capsule, hits the incoming inner shell surface, and the shell velocity
slows down. The low-density gas enclosed by the inner shell surface develops
a fairly uniform pressure and becomes part of the hot spot. At this point,
the imploding shell acts like a spherical piston on the hot spot until it finally
reaches stagnation. The hotspot pressure and temperature keep increasing as
the shell kinetic energy is converted into internal energy through compression
work. The hot-spot mass increases because the heat conducted from the hot
spot to the shell causes more shell material to ablate off the shell inner surface
into the hot spot. When the shell stagnates, the pressure is almost constant
throughout the hot spot and the shell. Since the density is much larger in
the shell than in the hot spot, the latter has much higher temperature. If the
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hot spot reaches the ignition conditions [5] deuterium-tritium DT reactions are
self-sustained and generate a burn wave into the shell, thus igniting the main
fuel.

Since the capsule performance depends on the stagnation parameters such as
density, areal density and temperature, it is crucial to determine the relations
between the in-flight and the stagnation variables, so that the target and laser
pulse can be properly designed to meet the requirements for high performance
implosions. A typical target configuration and laser power profile for the case
of fast ignition [20] is shown in Fig. 3.1.

Figure 3.1.: Fusion Target and power profile for fast ignition ICF [43]

The hydrodynamic relations for direct-drive fast-ignition and conventional in-
ertial confinement fusion explosion processes can be found in [43]. Typical
profiles for the compressed target density and temperature are described in
Fig. 3.2.

However, the modeling of such phenomena exceeds the purposes of the present
thesis and therefore, no modeling of the ignition and initial implosion process
was carried out. As described in detail in Section 3.2 , a developed macroscopic
state is chosen as the starting point of the modeling process. In ICF power
reactors, the energy of the plasma resulting from the implosion of the target
should be utilized for power production before it expands to larger dimensions.
In fusion propulsion applications however, the plasma expands in the presence
of a magnetic field to flow out of the magnetic nozzle, when detaching from the
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3.2. Developed Initial Conditions

Figure 3.2.: Density and temperature profile along radius of pellet for fast ig-
nition ICF [43]

magnetic field lines [3]. For that reason, an extended initial dimension of the
plasma is possible for the current modeling.

3.2. Developed Initial Conditions

In an analog manner to previous works related to the efficiency of magnetic noz-
zles for fusion propulsion applications, initial conditions were examined, where
the plasma has reached uniform conditions (homegeneous density, temperature)
and macroscopic expansion lengths comparable to the size of the nozzle (order
of magnitude of 10−1m). It was observed, that independent research groups
based their work on the same initial conditions. Specifically, in the works of
Kajimura et al. [26], Nagamine et al. [27] and Vchivkov et al. [37], three di-
mensional hybrid PIC codes were utilized with the same initial conditions.

The initial plasma radius was set to rp = 0.3 m and its total mass to m =
110 mg. Further physical characteristics of the plasma were the atomic mass
A = 197 u, the atomic number Z = 79 and the effective charge q = 16.81 e of
the ions. The parameter conceiling the initial ion velocities was given by the
total energy of the plasma Eplasma = 4 MJ. The density and the temperature
of the ions are defined equal to ρin = 10−3 kg/m3 and T = 100 eV respectively.
Finally, a single coil configuration was simulated, with a coil radius Rc = 1 m,
coil current I = 3.57 MA and coil center at x = −1 m, with the plasma being
located at the origin of the domain. The initialization parameters are given in
Table 3.1.
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Table 3.1.: Initial Conditions defined in [27]

Plasma energy 4 MJ

Plasma radius 0.3 m

Plasma mass 110 mg

Plasma density 10−3kg/m3

Ion temperature 100 eV

Ion atomic mass 197 u

Ion atomic number 79

Ion effective charge 16.81 e

Coil radius 1 m

Coil current 3.57 MA

3.2.1. Pressure of the plasma

The conditions described in Table 3.1 include implicit information regarding
the pressure of the plasma. Specifically, using the information about the tem-
perature and the density of the plasma, the mean pressure p can be obtained.

p = nkB T = ρ
Rgas
M

T = 3.25 · 104 N

m2
(3.1)

where Rgas stands for the ideal gas constant, M for the molar mass of the gas
and n for the particle density in m−3.

3.2.2. Velocity of the plasma

The values provided in [27] include information only regarding the total energy
of the plasma and do not explicitely mention the velocity of the ions. This in-
formation was extracted following an energy consideration. Specifically, since
the thermodynamic conditions inside the plasma domain are known, the en-
ergy of the plasma connected to these thermodynamic properties, ET , can be
calculated according to

ET =
3

2
N kB T = m

p

(γ − 1) ρ
= 5.38kJ (3.2)
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In Eq. 3.1, N represents the number of ions and γ the Poisson coefficient, equal
to 5/3 in the case of monoatomic ions. Comparing the thermodynamic compo-
nent ET to the total plasma energy Eplasma, it is evident that it represents only
a small fraction of the total energy. Since the total energy of the plasma in-
cludes the kinetic (EK) and the thermodynamic (ET ) components, the energy
balance yields

EK = Eplasma − ET ≈ Eplasma = 4MJ (3.3)

This outcome is expected for a highly energetic plasma where the kinetic ener-
gies of the ions due to the energy released by the fusion reactions are dominant.

Since all particles comprising the plasma in the work of Nagamine et al. [27]
are defined with the same properties (including velocity and atomic mass), the
formulation of the total kinetic energy can be simplified in terms of the average
ion velocity v̄ according to Eq. 3.4.

EK =

N∑
i=1

1

2
miv

2
i =

N∑
i=1

1

2
miv̄

2 =
1

2
mv̄2 (3.4)

This leads to v̄ = 2.697 105 m/s. This velocity is defined radially outwards
for the plasma ions and is applied uniformly within the plasma domain in the
works presented in [27], [26] and [37].

3.3. Gas dynamic investigation of initialization
uncertainty

The initial conditions described in the previous sections are used as guidelines
for the initialization of the 2D MHD simulation. In order to be able to compare
effectively between the present 2D MHD simulation and the past works, param-
eters like the volume specific kinetic energy have to be remain unaltered. The
goal of this consideration is not to reproduce the results of the previous works,
but to examine the differences that another model (in this case ideal MHD) can
induce, even when the starting conditions are similar. One parameter which
cannot be modeled with ideal MHD is the charge of the ions. Since the for-
mulation of MHD is based on a quasi-neutral plasma, the individual charge is
not a free parameter like in the case of particle methods. Moreover, from the
energy standpoint, due to the different domain dimensions (3D versus 2D), the
total energy of the plasma is different, so the volume specific energy Ẽ has to
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be equal. In the same energy consideration, it is important that the thermal
energy of the plasma remains small compared to the kinetic one, similarly to
the hybrid PIC case presented in Section 3.2. This way, the dominance of the
kinetic terms will be evident and will be closer to the reality.

However, in the case of MHD, there are additional parameters that need to
be modeled compared to PIC and hybrid methods. Specifically, the vacuum
conditions outside of the energetic plasma domain require special treatment.
Both the density and the pressure will have an influence on the expansion
of the plasma and could lead to a non-negligible energy exchange between
the energetic and the (initially) stationary particles. Specifically, the vacuum
conditions should be modeled in such way, that the energy stored within the
outside domain should be negligible compared to the kinetic energy of the
energetic plasma. This way the effect of the surrounding particles can be
ignored and the MHD case would resemble the initial conditions of Table 3.1.

3.3.1. Density of surrounding environment

An important parameter which is present in the MHD formulation of the
problem, lies in the modeling of the density outside of the energetic plasma.
Assuming that the magnetic nozzle is used as a part of the propulsion sys-
tem in an interstellar mission, the density of the interstellar medium (close to
4 · 10−22 kg/m3 [29]) is present in the surrounding environment of the engine.
The engine is operating in pulsed mode, meaning that ignitions take place in
sequence with a high frequency (close to 50 Hz [1], eventually leading to rem-
nant plasma in the nozzle from the previous ignition. The value of this density
is negligible compared to the plasma one, but remains still several orders of
magnitude above the Ultra High Vacuum (UHF) conditions of the interstellar
environment.

In general, modeling a density discontinuity of multiple orders of magnitude
between the plasma and the surrounding “vacuum” could lead to numerical in-
stabilities. A strong discontinuity would lead to extreme shocks requiring fine
meshes for their resolution. For that reason, a parametric study was carried
out with the purpose of determining the biggest possible value of the outside
density which could still serve as vacuum condition, when compared to the val-
ues of the plasma. A purely gas dynamic blast simulation was carried out for
different values of the outside density in the absence of a magnetic field. For
the initialization of the energetic plasma, a 2D section of a sphere (disc) with
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3.3. Gas dynamic investigation of initialization uncertainty

radius rp = 0.3 m was implemented, in order to retain the symmetry described
in [27]. A detailed presentation of the disc initialization is given in Section
3.4.1. The density inside the disc area is fixed to ρin = 10−3 kg/m3. A uniform
velocity distribution was defined, with all energetic particles having a radially
directed speed with the value vin = v̄ = 2.697 · 105 m/s. In order to focus
only on the effects of the outside density, a constant pressure was initialized
throughout the whole domain, equal to 3.25 · 104 N/m2. A summary of the
initial conditions is given in Table 3.2 .

To examine the effect of the outside density, the dimensions of the plasma
blastwave were measured and compared for the different configurations after a
constant physical time equal to 10 µs. This length was defined as the radius
at which the density of the plasma is equal to 90% of its maximal value. This
choice is justified when examining the time durations considered in [27], where
the results are shown for the first 8µs. The mesh used in the simulation is
shown in Appendix C.

Table 3.2.: Initial conditions for the parametric study of outside density influ-
ence

Variable Inside Outside

Density 10−3 kg/m3 ρout
Pressure 3.25 · 104 N/m2 3.25 · 104 N/m2

Velocity 2.697 · 105 m/s 0 m/s

Magnetic field 0 T 0 T

The results of this study for different values of the density ratio ρin/ρout, can
be obtained in Fig. 3.3.

As expected, a higher outside density (smaller ρin/ρout ratio) leads to an addi-
tional resistance against the expansion of the plasma and therefore to a smaller
displacement within the same time interval. After exceeding a specific ratio
between the initial densities inside and outside of the plasma domain, there
is no additional change in the expansion size of the plasma, as one can ob-
serve in the saturation part of Fig. 3.3. In fact, the maximal expansion radius
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Figure 3.3.: Gas dynamic expansion at t=10 µs for different density ratios
ρin/ρout

measures close to 2.7 m and agrees with the theoretical distance that an undis-
turbed particle would travel through, when having a constant speed equal to
v̄ = 2.697 105 m/s for a duration of 10µs. The limit after which the effect of
a further decrease in outer density becomes negligible, occurs at a factor of
1000, or explicitely for an outside density equal to ρout = 10−6 kg/m3. For
that reason, this factor 1000 was defined as the condition of near vacuum in
the domain outside of the plasma.

The importance of a low external density is obvious when taking into consid-
eration the development of the total kinetic energy in the domain along time.
The results of this investigation are shown in Fig. 3.4. Specifically, the ki-
netic energy of the plasma (normalized by its initial value for t=0 s) is plotted
against the physical time of the simulation in Fig. 3.4. The kinetic energy of
the domain was defined as

EK =

∫
Ẽ dV =

∫
1

2
ρ|v|2 dV (3.5)

As expected due to the collisions between the highly energetic plasma particles
and the (intially) stationary surrounding particles an impulse exchange takes
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3.3. Gas dynamic investigation of initialization uncertainty

place, leading to a decrease in the kinetic energy. In the absence of an external
field, the total energy is comprised of the sum of kinetic and thermodynamic
energies, which implies that the kinetic energy “loss” is transformed into an
increase in pressure (and hence thermodynamic energy). A higher value for the
outside density leads to an increase of this phenomenon and to a bigger kinetic
energy diffusion. For the density ratio chosen to represent the vacuum condi-
tions (factor of 1000), the fraction of kinetic energy transformed into pressure
increase, is limited to 10% during the first 10µs. This value was considered
acceptable for the present analysis, since the effect of a further descrease in the
external density in the kinetic energy profile was small.
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Figure 3.4.: Kinetic energy ratio (normalized to initial kinetic energy) along
time for different density ratios ρin/ρout

3.3.2. Pressure of surrounding environment

Apart from the density of the environment, a further parameter requiring treat-
ment (as opposed to the case of PIC and hybrid methods) is the pressure of
the plasma and the surrounding environment. From the energy perspective, a
pressure value would be needed, which would ensure that no severe influence
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on the total plasma energy takes place. The total energy per unit volume is
obtained by the sum

Ẽ =
1

2
ρ|v|2 +

p

γ − 1
(3.6)

A low pressure in the vacuum is therefore needed in order to render the en-
ergy of the outside domain negligible. Nevertheless, the same consideration as
in the case of the density is valid here, according to which a big discontinuity
could lead to numerical instabilities. For that reason, a parametric analysis was
carried out in order to examine the direct effect of the pressure ratio pin/pout.
Following the same scheme as in the density variation, the pressure of the ener-
getic plasma pin = 3.25 · 104 N/m2 remained constant, whereas the “vacuum”
pressure pout was altered. The initialization of the density followed the results
of the previous section, with ρin = 10−3 kg/m3 and ρout = 10−6 kg/m3. The
summarized plasma condition is shown in Table 3.3.

Table 3.3.: Initial Conditions for the parametric study of outside pressure in-
fluence

Variable Inside Outside

Density 10−3 kg/m3 10−6 kg/m3

Pressure 3.25 · 104 N/m2 pout
Velocity 2.697 · 105 m/s 0 m/s

Magnetic field 0 T 0 T

The results obtained for this variation of the outside pressure are shown in
Fig. 3.5. Evidently, the effect of the pressure on the total kinetic energy is
small due to the low vacuum density used (factor of 1000 smaller than the
inside one), and reaches a saturation at a value of 50 for the ratio pin/pout.
In order to model the physical condition of pressure difference between the
energetic plasma and the vacuum, a factor of 100 was chosen for the pressure
ratio, leading to pout = 3.25 · 102N/m2.
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Figure 3.5.: Kinetic energy ratio (normalized to initial kinetic energy) along
time for different pressure ratios pin/pout

3.4. Initial velocity profile

3.4.1. Uniform disc initialization

As presented in the discussion of the gas dynamic uncertainties, a possible
initialization of the plasma conditions includes the definition of a disc domain,
within which the properties are uniform. This approach was followed in the
work of Nagamine et al [27], where the density and velocity of the plasma
were initialized uniformly within a disc with radius rm = 0.3 m, with a 2%
perturbation of mode m=50, in order to smoothen out the discontinuity at the
edge of the plasma. The resulting contour plot of the density for t = 0µs is
presented in Fig. 3.6.

The area enclosed within the radius rp has constant density and is therefore
coloured uniformly (white). The dark annulus outside of this radius shows the
contour lines due to the changing density, as the domain switches from the
dense energetic plasma to the nearly empty vacuum domain. A radial plot of
the plasma number density over the radius for t = 1µs is shown in Fig. 3.7.
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3. Initialization

Figure 3.6.: Density contour plot during initialization [27]

Figure 3.7.: Number density radial profile for t = 1µs [27]

The diffusion of the density at the edge has increased after 1µs, leading to a
wider plasma domain of approximately 0.5 m.

In a similar process, the disc initialization of the 2D MHD simulation was
performed with the values in Table 3.4. A visualisation of these profiles along
the radial direction is shown in Fig. 3.8.
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3.4. Initial velocity profile

Table 3.4.: Initial Conditions for the uniform disc domain

Variable Inside Outside

Density 10−3 kg/m3 10−6 kg/m3

Pressure 3.25 · 104 N/m2 3.25 · 102 N/m2

Velocity 2.697 · 105 m/s 0 m/s

Magnetic field 0 T 0 T
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Figure 3.8.: Density, pressure and velocity profile for uniform disc initialization

With these initial conditions, the undisturbed expansion of the fluid in the
absence of an external magnetic field was simulated. The results at t = 0µs
and t = 10µs are shown in Fig. 3.9. One observes that due to the bigger ex-
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3. Initialization

pansion of the plasma, its maximal density has decreased and reached values
close to 50 times bigger than the modeled “vacuum” conditions. It is impor-
tant that the smallest value of the density reaches 10−9 kg/m3. This occurs
at the center of the domain and is a result of the radially outwards directed
velocity vectors, which lead to a rarefaction of the inner region. This effect is
further discussed in this section and in Appendix A. The pressure evolution is
shown to demonstrate a thin annulus with high values which corresponds to
the region of collisions between the expanding plasma ions with each other and
with the vacuum fluid. This are is characterized by a higher volume specific
thermodynamic energy. Again, values more than 1000 times smaller than the
modeled vacuum (≈ 1.2 · 10−1 N/m2) are present in the center of the domain.

Finally a shock wave can also be observed which is expected due to the ex-
tremely high Mach number during initialization (Ma ≈ 37) as one can observe
in Fig. 3.10. Since the fluid exchange momentum, a velocity distribution is
created, which leads to an increasing Mach number along the radius. However,
due to the high value of the Mach number in this hypersonic flow, a sharp drop
at the position of the normal shock takes place. The flow outside becomes
subsonic again (Ma < 1).

From the standpoint of gas dynamics, the time evolution of this initial profile
can lead to numerical issues at the center of the domain. Specifically, at this
point the biggest discontinuity in the velocity component takes place. Taking
as an example the x axis, a point infinitesimally to the right of the origin will
have a positive velocity whereas a point on the left side will have a velocity in
opposite direction but with the same magnitude. As described in Toro [36], an
initialization with such a sharp disconinuity in the velocity components can lead
to vacuum conditions at the origin. Effectively, the expansion of the gas due
to the radially directed velocity component leads to a sharp drop in pressure
and density. This phenomenon was verified with an 1D simulation where the
initialization with a discontinuity in velocity was modeled. The results are
illustrated in Appendix A and the effects resulting from this numerical issue
are further analyzed in Section 4.1.

3.4.2. Linear profile disc initialization

Apart from the numerical issues triggered by the vacuum condition due to the
velocity discontinuity, the disc initialization also predicts a less physically in-
tuitive representation of the plasma expansion. After further consideration of
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3.4. Initial velocity profile

Figure 3.9.: Density, pressure and velocity distribution for the uniform disc
initialization at t = 0µs (left) and t = 10µs (right)
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Figure 3.10.: Gas dynamic Mach number profile at t = 10µs for the uniform
disc initialization

the initialization process, it was evident, that a uniform radial velocity could
lead to an insufficient description of the plasma conditions, since particles lo-
cated close to the center of the explosion are defined with the same velocity
as the outer ones. At the moment defined as the starting point of the simu-
lation, the plasma conditions have developed since the ignition, and therefore
it is expected that all particles which have acquired a high speed have already
moved further from the origin than the ones with smaller speeds. This leads to
a velocity distribution with descreasing value for positions closer to the origin.
For that reason, an initialization with linear velocity profile along the radial
direction was analyzed. In this study, the density of the plasma was defined as
uniform throughout the plasma domain.

Of course, such an assumption leads to a different value for the maximal speed
of particles than the one shown in Table 3.4. The condition which was used in
order to define the velocity of the plasma was based on the formulation of the
kinetic energy. The total kinetic energy of the plasma should remain constant
in order for a comparison between the two initializations to be valid. When
a linear velocity distribution is assumed along the radius, the velocity profile
takes the form
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3.4. Initial velocity profile

v(r) = vmax ·
r

rp
(3.7)

and the new kinetic energy becomes

EK,new =

∫ rp

0

1

2
ρ(r)|v(r)|2dV =

∫ rp

0

1

2
ρin

(
vmax
rp

r

)2

4πr2dr (3.8)

For the energy equality to hold:

EK,new = 4MJ⇒ vmax = 3.433 m/s (3.9)

It was shown in Section 3.3.2 that the effect of the plasma pressure is not
significant for the energy consideration. To avoid further numerical instabilities
that could be caused by a varying pressure along the radius, the plasma pressure
was defined as constant with the value 3.25·104N/m2. A summary of the initial
conditions is given in Table 3.5.

Table 3.5.: Initial Conditions for the linear profile domain initialization

Variable Inside Outside

Density ρ = 10−3 kg/m3 ρ = 10−6 kg/m3

Pressure p = 3.25 · 104 N/m2 p = 3.25 · 102 N/m2

Velocity v(r) = 3.433 · 105 m/s · r
0.3m

v = 0 m/s

Magnetic field B = 0 T B = 0 T

The radial profiles of the initial conditions are visualised in Fig. 3.11.
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Figure 3.11.: Density, pressure and velocity profile for linear initialization

The forementioned initialization leads to the expansion properties described in
Fig. 3.13. Comparing these results with the ones obtained by the uniform disc
initialization, it is evident that the velocity and pressure distributions are very
similar. The form of the 2D expansion and the maximal values for the particle
speeds and plasma pressures are in the same range after 10µs have elapsed.
A difference observed lies in the value of the density and the dimensions of
the plasma expansion at the end of simulation. A factor of 2 is present in
the maximal density at t = 10µs (5.45 · 10−5 kg/m3 for the uniform disc and
2.65 · 10−5 kg/m3 for the linear case). This is caused mainly due to the bigger
maximum velocity in the linear profile initialization, which leads to a slightly
bigger dimension of the blast and hence to a smaller density value.

Another important asset is the value of pressure and density close to the origin
at t = 10µs. Specifically, the density at small radii is no longer smaller than
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3.4. Initial velocity profile

the vacuum value as opposed to the uniform initialization. In a similar manner,
the minimal pressure observed is approximately 2 orders of magnitude bigger
than in the previous case, thereby suggesting a bigger numerical stability and
avoidance of unnecessarily small pressures.

In this case, a shock is again present due to the hypersonic flow. The profile
of the Mach number over radial position can be seen in Fig. 3.12. Comparing
it to Fig. 3.10, one notices that the increase of the Mach number along the
radius takes place in a more uniform way, without the presence of big gradi-
ents. This is due to the fact that particles at smaller radii have retained their
velocity as opposed to the uniform velocity case, where all particles move equal
distances and are therefore gathered in a small annulus after the t = 10µs
have elapsed. The shock is again observed almost at the same position but the
maximal value of the Mach number is slightly descreased, mainly due to the
lower density. Both initializations were used for the simulations with magnetic
field in Chapter 4.

Figure 3.12.: Gas dynamic Mach number profile at t = 10µs (Linear Initializa-
tion)

43



3. Initialization

Figure 3.13.: Density, pressure and velocity distribution for the linear initial-
ization at t = 0µs (left) and t = 10µs (right)
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4. Results

4.1. Constant magnetic field

The concept of a magnetic nozzle involves the presence of external magnetic
fields created by superconducting coils. In order to shape the plasma into a
net thrust producing configuration, a non-uniform field has to be generated in
the nozzle. However, in order to obtain an estimate of the interaction between
the plasma and an external magnetic field in the ideal MHD case, simulations
were performed where a time-independent, uniform external magnetic field was
applied in the domain.

The interaction between the expanding plasma and the field was examined and
compared for the two initializations described in Section 3.4. It was observed
that an increasing magnetic field strength leads to numerical instabilities and
specifically to pressure values very close to zero, which led to a crashing of the
code.

4.1.1. Comparison of initializations

In order to examine the two initializations described in Section 3.4, the ex-
pansion of the plasma and its thermodynamic properties were observed under
the influence of a constant magnetic field. Two different field strengths of
B = 0.05 T and B = 1 T were used for comparison reasons and the direction
of the field vector was kept constant along the x-axis.

In the case of the uniform disc initialization, both magnetic field strength re-
sulted in a numerical instability, causing a negative pressure. In Fig. 4.1, the
thermodynamic properties (density and pressure) as well as the value of the
velocity in x direction are plotted along the x-axis. For each magnetic field
strength, the initial values as well as the values at the final simulation time
step (before the numerical instability) are shown. In the case of B = 0.05 T
this occurs at t = 0.55µs and for B = 0.05 T at t = 0.2µs.
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4. Results

Figure 4.1.: Density, pressure and velocity along the x-axis for t = 0µs (left)
and at the final time step (right) for B = 0.05 T (top) and B = 1 T
(bottom) (uniform disc initialization)

For both magnetic field strength, the density and pressure acquire values sev-
eral orders of magnitude smaller than vacuum. Due to the reasons explained
in Section 3.4.1 and Appendix A, the high velocity gradient around the middle
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4.1. Constant magnetic field

point leads to a vacuum, which cannot be resolved by the code, thereby lead-
ing to negative values for the pressure and density. The general form of the
profiles is equivalent for the two cases. Both demonstrate a shock close to the
plasma edge (decrease in velocity and increase in pressure and density), which
is expected for hypersonic speeds.

It can be observed however, that a stronger magnetic field leads to an earlier
instability. This can be explained by the higher acceleration of the fluid par-
ticles. Another important factor that has to be considered is the presence of
MHD waves. An increased field leads to a larger Alfven speed and to a larger
amplitude of the propagating wave. In the case of magnetosonic waves, where
rarefactions in the pressure can be present, it is expected that an increased
wave amplitude leads to a lower pressure. The characteristic wave speeds of
the system are further analyzed in Section 4.1.3. Due to the small timescale
of the simulation, the profiles of pressure, density and velocity along the y-
direction do not differ from the ones along the x-axis and therefore the whole
profile can be assumed as axis-symmetric.

In an analog manner, the same field strengths were used for the simulation of
the case with linear initialization. For the 0.05 T case, no instability occured
during the simulation. The results at t = 0µs and t = 1.2µs are shown in
Fig. 4.2. Results at future time steps (t = 5µs and t = 10µs) can be found in
Fig. 4.3.

One can observe that the descrease in pressure at the center is present but is
put into action later. Eventually it also leads to the code crashing (negative
pressure) but this occurs at approximately t = 12.5µs in this case. Due to
the particles remaining closer to the origin and their smaller speeds, a smaller
rarefaction near the origin takes place.

For the 1 T case, it was observed that the simulation encountered a numerical
instability after 1.2µs. Upon examination of the pressure profile, it is obvious
that the point of negative value is not longer located at the plasma origin but
instead at the edge of the plasma front. Although a slight decrease in the
pressure of the center is present, the effect is negligible compared to the “un-
dershooting” at the location of the plasma edge, which leads to values smaller
than the vacuum. The profile is shown in Fig. 4.2. A 2D contour plot of the
pressure and velocity for t = 1.2µs can be seen in Fig. 4.4.
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Figure 4.2.: Density, pressure and velocity along the x-axis for t = 0µs (left)
and t = 1.2µs (right) for B = 0.05 T (top) and B = 1 T (bottom)
(linear initialization)

A larger difference between the profiles in x and y directions is observed. The
pressure shows the expected elongation along the direction of the magnetic
field, whereas the velocity demonstrates a wider range along the y direction.
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4.1. Constant magnetic field

Figure 4.3.: Density, pressure and velocity along the x-axis for t = 5µs and
t = 10µs for B = 0.05 T (linear initialization)

The profiles of thermodynamic properties along the y axis can be found in
Fig. 4.5.

The expansion of the plasma along the y-axis shows no abrupt drop in ve-
locity as opposed to the x-axis profile. An almost linear drop in velocity is
observed which then stops at the edge of the transported fluid and is reduced
to zero. Qualitatively, this transport perpendicularly to the magnetic field can
be explained by the propagation of a fast magnetosonic wave as was mentioned
in section 2.1.2. On the other hand, the propagation along the x direction is
coupled with the presence of an Alfven and a sound wave (Fig. 2.4), whose
interaction leads to the observed undershooting in pressure.

The comparison of the two initialization procedures showed that they both
exhibit numerical problems, however the linear initialization was prefered for
the next simulations since it allowed a longer simulation time and represents a
physically more realistic setup.
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Figure 4.4.: Pressure and velocity distribution for t = 1.2µs and B = 1 T
(linear initialization)
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4.1. Constant magnetic field

Figure 4.5.: Density, pressure and velocity along y-axis for t = 1.2µs and B =
1 T (linear initialization)

4.1.2. Modification of outer pressure

To reduce the source of the numerical undershooting in pressure without com-
promising the physical validity of the problem modeling, the outer pressure was
modified. This served a double purpose: First, a higher outer pressure allows
for larger undershoots. Secondly, the smaller pressure discontinuity reduces the
gradient of the normal shock and also the interaction of the sound and Alfven
waves.

With the new value pin/pout = 10, the profiles in Fig. 4.6 were obtained. The
negative pressure at the plasma edge was avoided and the smallest pressure
value was shifted to the center of the domain. This configuration was adopted
for the next simulations. Table 4.1 summarizes the properties used in this sim-
ulation.
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Table 4.1.: Initial Conditions for the linear profile domain initialization

Variable Inside Outside

Density ρ = 10−3 kg/m3 ρ = 10−6 kg/m3

Pressure p = 3.25 · 104 N/m2 p = 3.25 · 103 N/m2

Velocity v(r) = 3.433 · 105 m/s · r
0.3m

v = 0 m/s

Magnetic field B = 1 T B = 1 T

Figure 4.6.: Density, pressure and velocity along x-axis for t = 1.2µs and t =
3.6µs for B = 1 T (linear initialization for pin/pout = 10)

4.1.3. Presence of MHD waves

In order to evaluate the results with an external magnetic field, it is important
to keep in mind the presence of the different waves in the MHD description
of the problem. In section 2.1.2 the dependency of the wave phase velocities
was shown as a function of the angle between the wave vector and the external
magnetic field vector. In the case simulated in this section, the thermodynamic
properties of the fluid outside of the energetic region lead to the characteristic
velocities shown in Table 4.2 according to Eq. 2.18, Eq. 2.23 and Eq. 2.27.
With this result, a dispersion curve similar to Fig. 2.4 was constructed and it
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4.1. Constant magnetic field

is shown in Fig. 4.7.

Table 4.2.: Characteristic velocities

vS 7.360 · 104 m/s

vA 8.902 · 105 m/s

vM 8.951 · 105 m/s

Slow wave
Fast wave
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Figure 4.7.: Wave phase velocity as a function of the θ between wave vector
and magnetic field

The magnitude of the speed of sound is small compared to the Alfven speeds,
as expected in vacuum. Moreover, it can be seen that the Alfven and magne-
tosonic speeds exceed the fluid speed and hence a sub-Alfvenic flow is present.
The maximal wave speed (vM ) was used in order to scale the dimensions of the
computational domain. In order to avoid wave reflections at the edges of the
domain, a radius bigger than 8.951 m is needed to ensure no reflection during
the first 10µs of the simulation. For that reason a 20x20 domain was used in
all calculations with magnetic field, as shown in Appendix C.
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4.1.4. Effect of velocity

Due to the problems encountered when modeling the high external field with the
presence of supersonic flows, the maximal speed was decreased to avoid shocks.
Specifically, two cases with maximal speeds equal to vmax/5 and vmax/10 were
examined, where vmax represents the nominal case presented previously. The
profiles of the plasma properties along x and y directions for t = 5µs and
t = 10µs are shown in Fig. 4.8, and Fig. 4.9.

The absence of the normal shock which was dominant in the results of section
4.1.1 can be observed. As expected, the case with higher velocity demon-
strates a higher expansion as well, as the density plot shows. The plots along y
direction prove however that the magnetosonic wave propagating through the
medium is independent of the initial speed of the particles and is defined purely
by the magnetic field vector and the density of the outer region. Comparing
the wavefronts in Fig. 4.9, the wave propagation speed can be reconstructed
and was found to coincide with the value in Table 4.2 wihin the measurement
uncertainty limits.

Another important effect observed is the evolution of the velocity along the y
direction. This velocity is perpendicular to the “frozen” external field lines and
therefore increases their curvature and hence the magnetic tension. This restor-
ing force acts as described in Fig. 2.2 and can exceed the inertia of the fluid,
thereby changing its direction of motion. This effect is observed at t = 10µs
(Fig. 4.9), where the components of y velocity seem to change sign. As ex-
pected, a lower speed results to a smaller inertia and that is the reason why
the vmax/10 case shows an amplification of this phenomenon. A visual repre-
sentation of the magnetic field lines curvature is given in Fig. 4.10.

The 2D contour plots for the density, pressure and velocity at t = 10µs for
both velocity values is given in Fig. 4.11. In the velocity plot, it is evident that
the wavefront of the fast wave is close to the edge of the domain. It is also seen
that it has reached almost the same distance independently of the expansion
direction, i.e. independently from the angle θ between the wave vector and
the magnetic field lines. This coincides with the prediction shown in Fig. 4.7,
where the speed of propagation of the fast wave was found to be almost equal
for all angles, due to the relatively small speed of sound. The intensity of the
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4.1. Constant magnetic field

Figure 4.8.: Plots along x-axis for maximal speed vmax/5 (left) and vmax/10
(right) at t = 5µs (top) and t = 10µs (bottom) for B = 1 T (linear
initialization)

wave (identified by the width in the contour plot) is not constant for all angles
and has its maximum along the y direction (90 degrees), whereas it drops to
zero along the x-axis (θ = 0).
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Figure 4.9.: Plots along y-axis for maximal speed vmax/5 (left) and vmax/10
(right) at t = 5µs (top) and t = 10µs (bottom) for B = 1 T (linear
initialization)

4.1.5. Efficiency of nozzle

In order to achieve a quantification of the effect that the magnetic field has in
the thrust performance, the efficiency of the configuration has to be obtained.
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4.1. Constant magnetic field

Figure 4.10.: Magnetic field vector plot for vmax/5 at t = 7.5µs and B = 1 T
(Linear Initialization)

However, in the case of a uniform magnetic field, the net impulse in the x direc-
tion (the desired thrust direction) will remain equal to 0, due to the symmetry
of the problem. For that reason, only the half xy plane was observed in order to
come up with an equivalent efficiency. A net x-impulse is found by integrating
the momentum over the half plane (x > 0) yielding an equivalent efficiency as
in Appendix B.

The efficiency is plotted for an increasing magnetic field strength in Fig. 4.12.
For small values of the field strength, a rapid increase in the efficiency was
observed. However for higher values of B, the efficiency saturates towards
the theoretical maximum of etanozzle = 1. Moreover, it was validated that a
smaller initial velocity resulted in a bigger efficiency. This effect comes from
the smaller inertia of the fluid, which makes it easier to be redirected by the
external field.
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Figure 4.11.: Pressure, density and velocity distribution for vmax/5 and
vmax/10 at t = 10µs and B = 1 T (linear initialization)
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Figure 4.12.: Efficiency over magnetic field strength at t = 10µs

4.2. Coil magnetic field

In order to simulate the movement of the plasma in the presence of an electro-
magnetic coil, the magnetic field created by a single coil was computed using
the Biot-Savart law [8]. The simulated configuration consists of a single circu-
lar coil with radius Rc, located at position r0 = (x0, y0, z0)T . The symmetry
axis of the coil is parallel to the x-axis and a constant current with magnitude
I is flowing through the superconducting coil. The magnetic field strength B
at the location r = (x, y, z)T is given by

B(r) =
µ0I

4π

∫
C

dl× (r − rc)

|r − rc|3
, (4.1)

where rc represents the location of a single point on the coil and dl an infinites-
imal piece of the coil, directed along the current flow. For the first simulation,
the values described in [27] were used in order to obtain an estimate of the
entities’ order of magnitude. This way the coil with Rc = 1 m was placed at
r0 = (−1, 0, 0)T m and allowed a current I = 3.56 MA to pass through it. The
magnetic field strength was calculated numerically and the resulting profile is
shown in Fig. 4.13.

The calculation of B(r) was validated using the analytical solution obtained
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Figure 4.13.: Contour plot of magnetic field strength: Arrows represent the
direction and the colormap the magnitude of the field strength

with the use of elliptical integrals [8]. The profile of the field’s magnitude along
the symmetry axis of the coil is illustrated in Fig. 4.14. Along this axis, the
maximal value is observed at the center point of the coil and it coincides with
the expected analytical solution

|B(−1, 0, 0)| = µ0I

2R
= 2.237 T (4.2)

Along the radial direction of the coil, the field strength density increases for
distances closer to the conductor position. A plot of the profile of the field
strength along the vertical position is given in Fig. 4.15. The theoretical value
at the position of the coil approaches infinity but serves no physical purpose
for the present simulation. Without any special treatment, the maximal field
strength is limited due to the finite mesh of the domain and hence reaches
values close to 5 T as shown in Fig. 4.15.

A summary of the initial conditions as resulted from the previous chapters can
be seen in Table 4.3. It was evident from the first simulation, that the region
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Figure 4.14.: Plot of the magnetic field strength along the symmetry axis of
the coil

Figure 4.15.: Plot of the magnetic field strength along the radial axis of the coil

close to the coil would need special treatment. Specifically, the pressure near
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the two conductor positions exhibits again negative values. A contour plot of
the pressure after 0.8 s is given in Fig. 4.16. The numerical undershooting in
the pressure occurs when the fast wave arrives at the location of the coil and
the transported pressure profile encounters the big field gradient.

Table 4.3.: Initial conditions for coil simulation

Variable Inside Outside

Density 10−3 kg/m3 10−6 kg/m3

Pressure 3.25 · 104 N/m2 3.25 · 103 N/m2

Velocity 2.697 · 104 m/s r
0.3m

0 m/s

Magnetic field Coil field Coil field

Figure 4.16.: Contour plot of pressure with zoom-in for t = 0.8µs

4.2.1. Sponge layer

In order to induce a damping of the pressure oscillation, a sponge layer was im-
plemented [2] which was placed at the location of the conductor. This method
damps the conservative state to the background value, to exclude the coil from
the solution. Different parameters were utilized in order to find the optimal
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4.2. Coil magnetic field

radius and dampening degree of the spong layer. It was observed that longer
simulation durations were allowed after this treatment, however the code was
not prevented from crashing. Specifically, a drop in pressure and an extreme
increase in velocity was observed at the edge of the sponge layer. A case where
the radius of the sponge was set equal to 0.5 m is shown in Fig. 4.17, Fig. 4.18
and Fig. 4.19.

Figure 4.17.: Pressure distribution with zoom-in for t = 2.6µs (Sponge Layer)

Figure 4.18.: Density distribution with zoom-in for t = 2.6µs (Sponge Layer)
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Figure 4.19.: Velocity distribution and vector plot with zoom-in for t = 2.6µs
(Sponge Layer)

One can observe that the plasma still possesses a small expansion dimension
due to the small timescale and hence no physical collision between the ener-
getic plasma particles and the coil/sponge is taking place. The disturbance is
triggered by the propagation of the MHD waves, which could not be resolved
by the sponge. The vector plot in Fig. 4.19 shows that outside of the critical
region the flow is as expected, with ions following the magnetic field lines and
being compressed at the locations of maximal field strength (symmetry point
of the coil).

4.2.2. Geometry modification

The observed issues with the pressure and the velocity are mainly triggered
due to the interation between the MHD waves and the high magnetic field gra-
dients close to the coil. In order to supress this phenomenon (since it provides
no physical information for the simulated system), the coil was placed further
away from the origin of the explosion.

The distance of the coil symmetry point from the origin was increased by a
factor of 4 and so did the radius Rc. In order to preserve the field strength of
the configuration, the current through the coil had to be increased by the same
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4.2. Coil magnetic field

factor, leading to I = 14.24 MA.

With these properties a bigger time evolution of the system was allowed, reach-
ing a physical time equal to t = 7.42µs. Fig. 4.21 illustrates that the minimal
pressure occurs at the plasma edge and not at the location of the conductor.
Although a slight pressure descrease is observed at the sponge layer, the drop
at the plasma edge is more dominant. This undershooting takes place at the lo-
cation of the plasma which is the closest to the coil, since the field strength has
a bigger value and leads to a higher fast wave speed and to an increased pres-
sure wave amplitude. The decreased pressure leads to an increase in velocity
as seen in Fig. 4.20. The density in Fig. 4.21 demonstrates a small elongation
along the x direction, proving that a net thrust is starting to build up.

Figure 4.20.: Velocity distribution for t = 7.42µs (Sponge Layer with bigger
coil dimension)
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4. Results

Figure 4.21.: Pressure (top) and density (bottom) distribution (zoom-in) for
t = 7.42µs (Sponge Layer with bigger coil dimension)
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4.2. Coil magnetic field

Higher pressure

Finally, an effort was made to supress the negative pressure in the fluid by
equalizing the initial pressure all over the domain, while preserving the mod-
ified geometry. According to this assumption, the relationship pout = pin =
3.25 · 104 N/m2 holds. Although this condition does not represent the physical
case realistically for reasons explained in Section 3.3, it was implemented for
the purpose of reducing the numerical issues.

The results at t = 11µs are shown in Fig. 4.22 and Fig. 4.23 and demonstrate
complicated shock and wave interactions leading again to a negative pressure.

Figure 4.22.: Density distribution (zoom-in) for t = 11µs (Sponge Layer with
bigger coil dimension and higher pressure)

Although the resolution of the steep gradients and pressure decrease was not
successful for an examination of the efficiency for bigger time scales, the small
simulation time period was examined with respect to the engine performance.
Fig. 4.24 shows the time dependency of the efficiency for the coil geometry with
increased dimensions.
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4. Results

Figure 4.23.: Pressure (top) and velocity (bottom) distribution for t = 11µs
(Sponge Layer with bigger coil dimension and higher pressure)
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4.2. Coil magnetic field

The difference between the two different pressure cases is minimal but as ex-
pected, the higher pressure demonstrates a slightly better performance. This
is caused by the fact that the increased thermodynamic energy of the vacuum
favours interactions with the energetic particles, thereby reducing their speed
and allowing the magnetic field to redirect them more effectively due to the
smaller inertia. The values are small in magnitude (maximal 1 % after 11µs),
demonstrate however a big time gradient thereby suggesting that they are far
from their saturation region.
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Figure 4.24.: Efficiency of the engine for single coil
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5. Conclusion

The purpose of this work was to simulate a fusion plasma thruster and to inves-
tigate the modeling of the physical effects when using the ideal MHD equations.
Fusion thrusters make use of the kinetic energy released during fusion processes
by redirecting the ion products for the generation of thrust. The potential use
of fusion thrusters in future interstellar missions calls for the presence of dif-
ferent techniques which can be used for their simulation.

Based on existing works which utilized different physical and numerical models
(PIC, hybrid, SPH), typical initialization parameters of the plasma properties
can be derived. Since the processes of ignition and hydrodynamic expansion
after the fusion reaction do not belong to the topic of this work, conditions with
macroscopic plasma expansion are chosen as initial conditions for the simula-
tion. For the applications considered, the plasma properties are characterized
by very high speeds resulting from the fusion process.

In order to compare the simulations with literature, the plasma properties
have to be modified to suit the ideal MHD model without compromising the
physical integrity of the problem. However it is found that certain parame-
ters like the charge of the ions lack sufficient modeling in the ideal MHD case
and hence could alter the underlying physical principles. On the other hand,
thermodynamic properties which do not require modeling in particle methods,
need special treatment in the case of ideal MHD. A disadvantage of the chosen
model lies in the representation of the vacuum conditions in a way that does
not induce numerical instabilities but still does not affect the integral quantities.

With the modified initial conditions, results for the expansion of the plasma in
the present of a constant magnetic field can be obtained. The influence of the
magnetic field strength on the efficiency of the nozzle is examined and shows
that an increased field strength also improves the thrust performance. Simi-
lar results yield from the examination of a coil magnetic field, where a time
dependent increase in the efficiency is observed and quantified. The model of
MHD also captures the movement of plasmas for a wider range of velocities
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5. Conclusion

and demonstrates better results in the case of lower speeds.

Due to the fact that the plasma is modeled as a fluid, the presence of waves is
unavoidable when examining solutions with a strong external magnetic field.
Although these waves represent physical phenomena which are existent in plas-
mas satisfying the MHD assumptions, their resolution triggers numerical insta-
bilities. Moreover, the 1st order FVM which was implemented for the calcula-
tions is the one with the highest stability due to its dissipative nature but still
cannot avoid all numerical problems. It is expected that higher order schemes
would lead to even higher instabilities.

It is also evident, that physical structures and regions with high magnetic field
gradients like the conductor coils used in magnetic nozzles, require special treat-
ment to moderate the solution in their vicinity. Although efforts were made
to diminish these unwanted effects, no results could be obtained for the thrust
performance for larger time scales.

Ideal MHD is an attractive modeling tool for plasma applications due to its
relatively simple formulation. It is shown to provide qualitatively correct so-
lutions in the case of fusion thruster modeling as far as redirecting the plasma
in the magnetic nozzle is concerned. However, due to the induced complexity
resulting from the wave propagation and extreme pressure rarefactions in the
presence of high speeds and magnetic field strengths, its effectiveness is con-
sidered to be less than in the case of particle-based and hybrid methods.

Since most presented disadvantages are connected to numerical issues, special
treatments of the strong gradients could pose a suitable solution without the
need of changing the underlying physics. Another possible suggestion would be
to extend the model to include viscous effects (resistive MHD) and to examine
which effects can be subsided with this formulation. In general, the physical
description of the problem is sufficient in the case of MHD and is able to pro-
vide results for smaller speeds and time scales, which implies that with proper
treatment of the numerical issues, a complete description of variable plasma
thruster configurations could be achieved.
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A. 1D Simulation of velocity discontinuity

In Section 3.2, the effect of a uniform disc initialization was examined. It
was mentioned that according to Toro [36], a numerical vacuum condition is
obtained at the origin of the velocity discontinuity. Specifically, Toro performs
a shock tube simulation with different gas dynamic conditions for the fluid at
right and left parts of the domain as described in Table A.1.

Table A.1.: Initial Conditions defined in [36]

Property Left Right

Velocity -0.2 0.2

Pressure 0.4 0.4

Density 1.0 1.0

The results of the simulation after 0.15 time units are shown in Fig. A.1.

Figure A.1.: Density and pressure plots for 1-D gas dynamic shock tube simu-
lation [36]

In order to verify the process for the values used in Section 3.2, a 1D simulation
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A. 1D Simulation of velocity discontinuity

was set up with the initialization shown in Fig. A.2

Figure A.2.: Initial conditions of the 1-D Simulation

The solution of the 1D shock tube expasion problem lead to a sharp decrease in
the pressure and density as illustrated in Fig. A.3. The values of the thermody-
namic properties close to the origin are close to zero and therefore the numerical
issues triggered by this type of initialization are clearly demonstrated.
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Figure A.3.: Density, pressure and velocity plots for 1D gas dynamic shock tube
simulation after 2 µs and 4 µs
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A. 1D Simulation of velocity discontinuity
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B. Calculation of efficiency for constant field

In Section 4.1, the efficiency of the nozzle was examined in the case of a con-
stant magnetic field. In the case of an isotropic expansion and a uniform
magnetic field, the net impulse in the x direction (the desired thrust direction)
becomes zero. For that reason, only half of the domain was examined in order
to quanitfy the compression that the magnetic field causes.

The net impulse in the x direction is hence positive even in the case of a uniform
expansion in the absence of an external field. The value of this equivalent
efficiency for the isotropic case is easily obtained by taking into account the
sketch in Fig. B.1.

Figure B.1.: Isotropic expansion and velocity vectors

The velocity of each element can be described by the vector (vx, vy)T = (v ·
cos(θ), v · sin(θ))T . The magnitude of the velocity is v =

√
v2x + v2y. Since only

the region for x > 0 is of concern, θ takes values between −π/2 and π/2. The
efficiency according to Eq. 1.12 becomes
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B. Calculation of efficiency for constant field

ηnozzle =

∫
ρvx dV∫
ρv dV

=
r2/2

∫ π
2

−π
2
ρv cos(θ) dθ

r2/2
∫ π

2
−π

2
ρv dθ

=
2

π
≈ 0.63662 (B.1)

It is therefore expected that a magnetic field along the positive x direction will
always provide values for this equivalent efficiency higher than 0.63662.
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C. Meshes

The domain used in the simulations consisted of a stretched mesh as shown in
Fig. C.1 and Fig. C.2. The depicted mesh consists of 100 nodes in each direc-
tion whereas the mesh used throughout the simulations was made up of 800
nodes in each direction. The dimensions of the mesh were chosen to be 10x10
meters in the cases without external field. For the simulations with external
magnetic field, the dimensions of the mesh were changed to 20x20 meters as ex-
plained in Section 4.2 and the number of elements along each direction was also
doubled leading to 1600x1600, whereas the stretch parameters were kept equal.
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C. Meshes

Figure C.1.: Stretched mesh with 100x100 elements
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Figure C.2.: Zoom of the stretched mesh with 100x100 elements
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