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A B S T R A C T

The current study evaluates the performance of magnetic sails as a function of the incoming velocity and flow
direction. A particle model is employed for the simulation of multiple angle-velocity combinations for the
incoming ion flow, leading to a relationship between the drag force and the sail properties. Apart from the
drag force, the model is able to predict lift and side forces on the sail. The importance of the non-axial forces
is evident when designing plane-change maneuvers within the solar system. Using the solar wind and the
correct magnetic sail pitch angle, a change in the inclination of the orbital plane can be achieved. A study is
therefore presented using a single-coil magnetic sail starting in the ecliptic plane and employing a bang–bang
control for the pitch angle. An increase of more than 30◦ in the orbital inclination is achieved within a 20
year time-frame.

1. Introduction

In an effort to maximize the available payload mass for a specific
mission, innovative propellantless space propulsion techniques are very
attractive for interplanetary and interstellar missions. Propellantless
propulsion systems rely on the utilization of external power sources to
produce thrust, instead of using on-board fuels and in this framework,
the solar wind is one of the most promising candidates for available
energy sources within the solar system. Apart from the concept of the
electric sail [1] which consists of charged tethers that deflect the solar
wind, the magnetic sail system is another propulsive device that has
gained research interest in the past years.

The concept of using magnetic sails in order to take advantage of
the interstellar plasma or the solar wind was first proposed by Zurbin
and Andrews [2]. According to the concept of the magnetic sail, the
magnetic field generated by a current-carrying coil can deflect incom-
ing ions and therefore experiences a drag force. The main advantage is
the absence of any propellant, meaning that the system is very efficient
in terms of required mass.

The application of this component is very attractive for interstellar
missions where it can be used to decelerate the probe to allow for
an orbital insertion in the target star system without the need for
additional propellant [3,4]. Combinations of magnetic and electric
sails have also shown to be efficient for this purpose [5]. Apart from
interstellar missions, the use in the design of interplanetary trajectories
is also very interesting, as the solar wind can be utilized to change
the semi-major axis of the orbit, allowing for missions to the outer
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or inner planets [2,6] and for the maintenance of circular, displaced,
non-Keplerian orbits around the Sun [7].

For the simulation of the interaction of the plasma flow and the
sail’s magnetic field, several methods have been employed in the
past. Magnetohydrodynamics approaches [8,9], particle in cell (PIC)
methods [10,11] as well as hybrid methods [12,13] can be found in
published literature. Scaling laws using particle simulations have also
been derived for the axial magnetic sail configuration [14]. Experimen-
tal investigations of small-scale magnetic sails have been carried out
serving as a proof of the working principle [15–17].

In the work presented here, a particle based method is implemented
to describe the sail force dependence on the ion velocity for different
configurations. The method is explained in detail in Section 2. The pro-
files for the drag, lift and side forces for different angle configurations
are derived in Sections 3–5. The obtained dependencies are then used
to design control laws for optimal interplanetary trajectories. Using a
bang–bang control, a change in the orbital inclination of a heliocentric
orbit is presented in Section 6.

2. Computational setup

In the nomenclature used throughout the paper, the reference coor-
dinate system shown in Fig. 1 is used. The 𝑍-axis is aligned with the
incoming flow direction and is hence the direction at which the drag
force is experienced. The 𝑋-axis is vertical to the flow direction and the
𝑌 -axis is chosen as to complete the orthogonal coordinate system. The
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Fig. 1. Coordinate system and magnetic sail angle used in the present analysis. The red loop represents the magnetic sail.

magnetic sail’s pitch angle is also defined as the angle 𝜃 in the right-
subfigure of Fig. 1. This corresponds to the angle between the sail and
the 𝑍-axis, with 𝜃 = 90◦ representing the situation where the flow is
aligned with the coil axis.

To simulate the interaction of the incoming ion flow with the
magnetic field of the sail, a particle model is implemented. A series
of particles is released from an inflow boundary, which interacts with
the stationary magnetic field created by the magnetic sail.

The trajectory of each particle is described by the non-relativistic
Lorentz force equation and the resulting ordinary differential equation
(ODE) shown in Eq. (1) is integrated in time.

𝑚𝑝 ⋅ �̇� = 𝑞𝑝𝐯 × 𝐁 (1)

where 𝑚𝑝 and 𝑞𝑝 represent the mass and electric charge of the ions
respectively and 𝐯 is their velocity.

In order to simulate the force imparted on the magnetic sail due
to the incoming ion flow for each position within the domain 𝐱, the
magnetic field of the sail has been calculated using the Biot–Savart law:

𝐁(𝐱) =
𝜇0𝐼
4𝜋 ∫𝐿

d𝑙′ ×
(

𝐱 − 𝐱′
)

|𝐱 − 𝐱′|3
(2)

where 𝐿 represents the current carrying loop and 𝐼 the current.
For a magnetic sail represented by a single loop of a coil, the

resulting magnetic field strength is shown in Fig. 2. In this figure, the
red arrow represents the direction of movement of the incoming ions.
The coil is tilted with respect to the incoming velocity vector by an
angle 𝜃. Isolines of the magnetic field strength are also represented by
solid black lines.

In the case where the angle 𝜃 is equal to 90◦, i.e. when the coil axis
is parallel to the incoming flow, the problem becomes axisymmetic. In
all other configurations however, the problem has to be solved in a 3D
domain.

To achieve that, the boundary inflow is meshed as shown in Fig. 3.
For each inflow element with width 𝑑𝑥 and height 𝑑𝑦, a particle is
released. The trajectories of the individual exemplary particles are also
plotted in the same figure after their interaction with the magnetic sail.
Each of the particles imparts an infinitesimal force 𝐝𝐅 onto the sail
which is given by:

𝐝𝐅 = −𝑛𝑝 ⋅ 𝑚𝑝 ⋅ ||𝐯𝟎|| ⋅ (𝐯𝐅 − 𝐯𝟎) ⋅ 𝑑𝐴 (3)

Note that this equation is valid since the Lorentz force is a con-
servative force, meaning that the magnitude of the particle velocity
does not change during the interaction with the magnetic field, hence
𝑣 = |

|

𝐯𝟎|| = |

|

𝐯𝐅||. Note that the effect of the flow-induced electric field is
neglected in this modeling approach. This results to an ion-orbit model
which has been employed in the past for zero-order calculations of heat
fluxes in fusion divertors [18] and for magnetic sail drag forces [14].

Fig. 2. Normalized magnetic field strength of a magnetic sail consisting of a single
coil. The red arrow represents the incoming ion flow.

For each particle, the reflectivity factor 𝑆 can be defined as the
normalized inner product of the incoming and outgoing velocities:

𝑆 =
𝐯𝟎 ⋅ 𝐯𝐅
|

|

𝐯𝟎||
2

(4)

A reflectivity factor of 1 would imply that the particles keep moving
in the initial direction, i.e. unaffected by the magnetic field, whereas
a value of −1 corresponds to a case where the particle’s movement is
reversed by 180◦.

The total force on the sail is obtained by summing up all the
contributions by the individual particles released into the domain:

𝐅 = ∫𝐴
𝐝𝐅 (5)

The position of the inlet plane is chosen so that the interaction of
the magnetic field with the incoming flow is minimal at the boundary.
The vertical and horizontal dimensions are also chosen in a way to
ensure that the outer most particles are unaffected by the magnetic
field strength. This is shown in Fig. 4, where the streamlines along
the y-plane are shown along with the magnetic field lines. The coil is
represented by the red line and is inclined by 𝜃 = 60◦ in the current
configuration. One can recognize that the wake region behind the sail
does not extend to the upper and lower bounds of the domain. This
implies that the particles at the edge of the domain do not interact with
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Fig. 3. Schematic overview of the inflow grid and interaction with the inclined magnetic sail.

Fig. 4. Ion streamlines with superimposed magnetic field lines for an angle 𝜃 = 60◦.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

the sail and hence the size of the domain is adequate for this problem
setup.

The resolution of the inlet grid has been examined to ensure that it
does not influence the final results. A resolution of 800 × 800 particles
has been chosen after a grid independence study. Note that the mesh
is not uniform in x and y directions but rather is finer in the regions
closer to the coil axis, as this is where the larger gradients are expected.

In the work of Gros [14], the effective area 𝐴 is introduced, which
is defined as in Eq. (6). This represents the area that a fully reflective
sail would have.

𝐴 = 𝐹
2𝑚𝑝𝑛𝑝 ||𝐯𝟎||

2
(6)

In the current framework, we extend the notion of the effective area
in all three space dimensions. We merely use this as tool to simplify the
resulting expressions for the lift and side forces as shown in Section 5.
Using this modeling approach, the effective area has three components,
defined as:
[

𝐴𝑥, 𝐴𝑦, 𝐴𝑧
]𝑇 = 1

2𝑚𝑝𝑛𝑝 ||𝐯𝟎||
2
⋅
[

𝐹𝑥, 𝐹𝑦, 𝐹𝑧
]𝑇 (7)

For the effective area in 𝑧 direction (i.e. the one corresponding to
the drag on the sail), the following expression can be utilized:

𝐴𝑧 = ∫

∞

0 ∫

∞

0

1 − 𝑆(𝑥, 𝑦)
2

𝑑𝑥𝑑𝑦 (8)

3. Drag for 𝜽 = 𝟗𝟎◦

The majority of the previous studies investigating the performance
of magnetic sails have focused on the configuration where the coil axis
coincides with the incoming flow direction. This corresponds to the 𝜃 =
90◦ setup using the nomenclature introduced in this work. In this setup,
the problem becomes axisymmetric and the use of a two-dimensional
grid for the inlet boundary becomes obsolete. Instead, a 1D grid in
radial direction is sufficient to describe the problem when dealing with
particle methods. This is the approach also used by Gros [14].

In the current section, the dependence of the force on the incoming
velocity of the ions is examined. The scaling relationship between the
sail radius, the sail current and the axial velocity is already derived
in [14]. For that reason, only the velocity of the ions is altered in the
present section, for a constant sail size and current. To describe the
velocity, the normalized velocity 𝛽 = 𝑣∕𝑐 is used, where 𝑐 is the speed
of light.

In the left sub-figure of Fig. 5, the dependence of the reflectivity
factor on the injection position of the particles and the particle velocity
is shown. The injection position is described by the radial position 𝑥∕𝑅
in this axisymmetric configuration, with 𝑥 = 0 representing the axis of
the sail. The right sub-figure illustrates the reflectivity profiles for three
representative values of the velocity.

Starting from the lower 𝛽 values one can observe that a large portion
of the particles experience a large deflection due to the interaction
with the magnetic sail. Specifically, for 𝛽 = 10−4 the reflectivity 𝑆
is smaller than 1 for all particles injected at radial positions larger
than 𝑥∕𝑅 = 0.15, indicating a positive drag force. For positions with
𝑥∕𝑅 ≤ 0.15 the magnetic field lines are almost parallel to the incoming
velocity vector leading to a negligible interaction.

For larger values for 𝛽 it is evident that the interaction window
starts shrinking. Specifically, for 𝛽 = 10−3 it extends from 𝑥∕𝑅 ≈ 0.3 up
to 𝑥∕𝑅 ≈ 6 and for 𝛽 = 10−2 it only reaches up to 𝑥∕𝑅 ≈ 2. For further
increased values of the velocity, the interaction window is negligible,
leading to a complete absence of interaction between the particles and
the magnetic sail. This can be inferred by the profile of reflectivity for
𝛽 = 10−1, which is constant and equal to 1 for all particle injection
positions. The decreasing interaction magnitude for larger velocities
can be explained by the smaller interaction time-scale that is available
to them. Due to the higher speed, they spend less time in the presence
of a sufficiently strong magnetic field and therefore interact minimally.

It can be hence deduced that the effective cross-sectional area of
the sail decreases with increasing velocity. This finding is confirmed
by Fig. 6, where the normalized area (in multiples of the physical
sail cross-sectional area 𝜋 ⋅ 𝑅2) is plotted. Despite the monotonically
reducing area, the drag force is not experiencing the same behavior
due to the quadratic contribution shown in Eq. (3). For that reason,
an optimal velocity can be found for a given sail current and radius.
The force results for a sail current 𝐼 = 105 A, radius 𝑅 = 100m and
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Fig. 5. Reflectivity factor as a function of the ion velocity and the injection position for a sail current 𝐼 = 105 A and radius 𝑅 = 100m.

Fig. 6. Effective area and force as a function of velocity for the 90◦ (axial) sail
configuration. A sail current of 𝐼 = 105 A and sail radius 𝑅 = 100m is used.

an ion density 𝑛𝑝 = 0.05 cm−3 (corresponding to the expected values
in the Local Bubble [19]) are also shown in Fig. 6. For the present
configuration, the optimal is found for 𝛽 ≈ 1.4 ⋅ 10−2. The force profile
is also compared to the results reported in Gros [14], demonstrating a
very good agreement within 9%.

To describe the relationship between the velocity and the effective
area, a scaling based on the work of Gros [14] is employed as shown
in Eq. (9).

𝐴𝑧,90◦ (𝛽) = 𝛼𝑧,90◦ ⋅ 𝜋𝑅
2 ⋅

[

log
(

𝐼
𝛽 ⋅ 𝐼𝑧,𝑐,90◦

)]𝑛𝑧,90◦
(9)

The parameters in this equation have been determined by perform-
ing a least-squares fit with the numerical simulation results and are
reported in Table 1. The results for the axial configuration strongly
resemble the values found in [14], which are reported as 𝛼𝑧,90◦ = 0.081,
𝐼𝑧,𝑐,90◦ = 1.55 ⋅ 106 and 𝑛𝑧,90◦ = 3.

4. Dependency of drag on the angle of attack

Having established an approximation for the drag force in the axial
configuration, the next step lies in examining how the force varies in
relation to the sail angle of attack. For this reason, simulations have
been carried out for multiple angle configurations ranging from 𝜃 = 0◦

Table 1
Fit parameters for the effective area formula.
Parameter Value

𝛼𝑧,90◦ 0.0599
𝐼𝑧,𝑐,90◦ 1.303 ⋅ 106

𝑛𝑧,90◦ 3.347
𝛼𝑧,0◦ 8.25 ⋅ 10−7

𝐼𝑧,𝑐,0◦ 1.817 ⋅ 104

𝑛𝑧,0◦ 7.643
𝛼𝑦,1 4.24 ⋅ 10−4

𝐼𝑦,𝑐1 1.336 ⋅ 106

𝑛𝑦,𝛽,1 6.128
𝛼𝑦,2 0.057
𝐼𝑦,𝑐2 2.621 ⋅ 106

𝑛𝑦,𝛽,2 1.597
𝑛𝑦,𝜃 0.833

up to 𝜃 = 90◦. The results for all further angles (in the range 90◦ ≤ 𝜃 ≤
360◦) can be inferred by a simple geometrical transformation using the
0◦ ≤ 𝜃 ≤ 90◦ findings due to the symmetry of the problem.

Examples of the ion streamlines for different angles of the sail can
be seen in Fig. 7, where a coarse sample of all incoming ions is chosen
for visualization purposes and the results along the 𝑦 = 0 plane are
shown.

In all four configurations a wake can be found downstream of
the magnetic sail, similar to the flow around objects in typical fluid
dynamic applications. However, some differences can be found when
comparing the different angles of attack. First of all, the width of this
wake appears to have its maximal value when the angle 𝜃 is equal to
90◦ and is reduced for lower attack angles. This implies that for smaller
values of 𝜃, the influence regime of the sail’s magnetic field extends
to a smaller range, meaning it reacts with less particles, at least along
the y-plane. Nevertheless, this does not necessarily imply a larger drag
for the 𝜃 = 90◦ setup. In fact, for the 𝜃 = 90◦ case, there are several
particles that manage to go through the sail and exit the domain with
little interaction with the magnetic field. As the angle is reduced, the
number of unaffected particles drops. Therefore a more systematic way
is required in order to evaluate the efficiency of the angle of attack in
terms of achieved drag.

For that reason, the reflectivity factor as a function of the initial
particle position is shown in Fig. 8. Three representative velocities
(𝛽 = 10−1, 𝛽 = 10−2, 𝛽 = 10−3) and four angles of attack (𝜃 = 90◦,
𝜃 = 60◦, 𝜃 = 20◦, 𝜃 = 0◦) are chosen. In all of those plots, the effective
area is proportional to the area in the figure which has reflectivity
values less than 1, as elaborated in Eq. (8).

The first property which can be established for the velocity de-
pendence is that the effective area appears to increase with smaller



Acta Astronautica 177 (2020) 122–132

126

N. Perakis

Fig. 7. Ion streamlines with 𝛽 = 10−2 along the 𝑦 = 0 plane for different coil angles: (a) 𝜃 = 90◦, (b) 𝜃 = 60◦ (c) 𝜃 = 20◦, (d) 𝜃 = 0◦. A sail current 𝐼 = 105 A and sail radius
𝑅 = 100m are used.

velocities for all different angles of attack. Although this fact was
established already in Section 3 for the 90◦ case, now it is evident for
other values of 𝜃 as well. Despite the increase in the effective area, the
form of the contour-plots in Fig. 8 seems to remain mostly unaltered
for different velocity values and is only scaled up, filling a larger part
of the grid.

However, large discrepancies can be observed when comparing the
different angles to each other. Starting from the 90◦ configuration,
where the profiles are axisymmetric, decreasing the value of the angle
leads to an increase in the complexity of the obtained reflectivity flow-
fields. Specifically, for the smaller angles, interaction patterns with very
small wavelengths can be observed. This implies a very high sensitivity
of the reflectivity on the starting position of the ions, leading to a
chaotic pattern.

Integrating the reflectivity over the entire domain and multiplying
with the incoming ion impulse like in Eq. (3), leads to the total force
of the different angles as a function of the velocity.

The resulting 2D curve as a function of 𝛽 and 𝜃 as well as some line
plots for representative 𝛽 values are shown in Fig. 9. In the left sub-
figure, the markers represent the simulation points and the solid surface
the resulting numerical fit, which will be explained in this section. It
is evident from the figure, that the force on the sail is maximal for
the 0◦ configuration, independent from the incoming velocity. This is
an important finding, as it implies that the axial configuration is less
efficient in the velocity range examined here. Moreover, the form of the
force–velocity profile seems to change for different angles of attack.
Whereas the profile for 90◦ has its maximal value for approximately
𝛽 = 1.5 ⋅ 10−2 as already seen in Fig. 6, the 0◦ configuration has
no local maximum and is a monotonically increasing function within
the examined velocity range. By investigating the other angle values
as well, it appears that the maximum force is achieved for higher
velocities than for the axial sail configuration, as the angle is decreased.
It is therefore expected that the 90◦ force will also reach a maximum
which however corresponds to a value 𝛽 > 0.1. As relativistic effects
become relevant in those speeds, no simulations have been carried out
to confirm this assumption.

Nevertheless, similar to the analysis performed in Section 3, a
numerical fit of the effective area in the 0◦ configuration has also been
performed, using the same scaling law as in Eq. (9):

𝐴𝑧,0◦ (𝛽) = 𝛼𝑧,0◦ ⋅ 𝜋𝑅
2 ⋅

[

log
(

𝐼
𝛽 ⋅ 𝐼𝑧,𝑐,0◦

)]𝑛𝑧,0◦
(10)

The fit parameters can be found in Table 1. For the description of
the force dependence on both the angle and the velocity, a blending

of the force for the two extreme configurations (90◦ and 0◦) using the
hyperbolic tangent function was found to be suitable. This is described
in Eq. (11). The chosen fit is shown with the 2D curve in Fig. 9 and
exhibits a maximal deviation of 9% from the simulated values.

𝐹𝑧(𝛽, 𝜃) = 𝐹𝑧,90◦ (𝛽)+0.5⋅
[

tanh
(

2.5 ⋅
(𝜋
4
− 𝜃

))

+ 1
]

+
(

𝐹𝑧,0◦ (𝛽) − 𝐹𝑧,90◦ (𝛽)
)

(11)

5. Lift and side forces

Apart from changing the dependence of the drag force on the
velocity, an angle of attack different that 90◦ also introduces force
components along the axes perpendicular to the incoming ion velocity.
This will be referred to as ‘‘lift forces’’ (along the 𝑥-axis based on the
coordinate system in Fig. 3) and ‘‘side forces’’ along the 𝑦-axis.

An example for the side force experienced by the sail can be seen
in Fig. 10, where the streamlines of the particles injected at 𝑥 = 0 are
drawn. An asymmetrical deflection of their trajectories can be inferred
from the figure with a tendency towards the positive 𝑦-axis. In this
particular case, the deviation in positive and negative 𝑦-axis appears
to be unbalanced, leading to a net side force on the sail. The side force
has also been explored in previous studies [12].

To understand the origin of the side force, one can examine the mag-
netic field lines in Fig. 4, where the sail angle 𝜃 is lower than 90◦. Both
for the upper (𝑥 > 0) and lower half (𝑥 < 0), the magnetic field lines
passing through the coil (close to its axis), point in the same direction
along the vertical, i.e. downwards in 𝑥-direction. Hence according to
the Lorentz force, both in the upper and lower halves of the domain,
the ions (which move in positive z direction) interacting with the field
will experience a force along the positive 𝑦-axis. Therefore, the side
forces in the upper and lower half do not cancel out but get added.

A typical profile of the drag, lift and side forces as a function of the
angle of attack is shown in Fig. 11. The velocity chosen for this plot
corresponds to 𝛽 = 10−2 but the same qualitative trend can be seen
for all velocity values without loss of generality. The absolute force
values correspond to a sail current 𝐼 = 105 A, radius 𝑅 = 100m and
an ion density 𝑛𝑝 = 0.05 cm−3. Following the convention of the chosen
coordinate system, 𝐹𝑧 is the drag force, 𝐹𝑥 the lift and 𝐹𝑦 the side force.

As expected, both the lift and side force are zero for the 90◦

configuration. For the 0◦ setup, the lift disappears but there is still
a non-negligible side force. The reason for the non-disappearing side
force is that for the flat sail (𝜃 = 0◦), both the ions flowing over the
sail as well as the ones flowing under it, experience a force in the same
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Fig. 8. 𝑆 reflectivity factor for different velocities (from left to right: 𝛽 = 10−1, 𝛽 = 10−2, 𝛽 = 10−3) and different angles (from top to bottom: 𝜃 = 90◦, 𝜃 = 60◦, 𝜃 = 20◦, 𝜃 = 0◦). A
sail current 𝐼 = 105 A and sail radius 𝑅 = 100m are used.

direction and hence no canceling of the net contribution can occur. The
lift on the other hand vanishes as the setup is symmetric with respect
to the 𝑥-axis.

The lift force appears to be negative for all other angles between the
two extreme configurations. The sign of the force is not that important
as a change of the current direction or a flip of the sail by 180◦ would
produce a positive value. For that reason only the magnitude of the
force will be discussed. This appears to steadily increase until 30◦ and
then continuously drop back down to zero for 𝜃 = 90◦. The side force
on the other hand seems to have a plateau value for angles between 0◦

and 40◦. Only for larger values does it start dropping further towards
0. In the same figure, the tangent hyperbolic nature of the drag force is
visible, as already established in Section 3. The profiles for the drag and
the lift forces are in qualitative agreement with the work of Kajimura
et al. [12].

The combined dependence of the lift and side forces on the velocity
and angle is illustrated in Fig. 12. It can be seen that in contrast to the

drag force shown in Fig. 9, the lift and side force are monotonically
increasing with the velocity, independent from the magnetic sail angle.

Due to the relatively complex form of the lift force curve, no
numerical fit has been performed but rather a Kriging meta-model has
been used [20]. The side force on the other hand can be described
with satisfying accuracy based on Eqs. (12)–(13). The corresponding
parameters are listed in Table 1.

𝐴𝑦(𝛽, 𝜃) = 𝐴𝑦(𝛽) ⋅ [cos(𝜃)]
𝑛𝑦,𝜃 (12)

𝐴𝑦(𝛽) = 𝜋𝑅2 ⋅
[

𝛼𝑦,1 ⋅
(

log
(

𝐼
𝛽 ⋅ 𝐼𝑦,𝑐1

))𝑛𝑦,𝛽1
+ 𝛼𝑦,2 ⋅

(

log
(

𝐼
𝛽 ⋅ 𝐼𝑦,𝑐2

))𝑛𝑦,𝛽2]

(13)

6. Orbital plane change using magnetic sail

Several studies have been performed investigating the suitability of
magnetic sails for maneuvering within the solar system. In contrast to
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Fig. 9. Drag force as a function of the angle of attack and the incoming ion velocity. A sail current 𝐼 = 105 A and sail radius 𝑅 = 100m are used.

Fig. 10. Streamlines of ions with starting positions along the 𝑥 = 0 line for 𝛽 = 10−2 and 𝜃 = 60◦. A sail current 𝐼 = 105 A and sail radius 𝑅 = 100m are used.

Fig. 11. Drag, lift and side force as a function of the magnetic sail angle for 𝛽 = 10−2.
A sail current 𝐼 = 105 A and sail radius 𝑅 = 100m are used.

interstellar missions, where the magnetic sail can be employed as a
propellantless propulsion system which brakes the spacecraft against
the interstellar medium, in interplanetary missions the driver for the
magnetic sail force is the solar wind. In the present section, the per-
formance of the magnetic sail within the magnetic wind environment
is assessed for different mission scenarios based on the force curves
derived in Sections 3–5.

For all simulations presented here, the Gaussian form of the Kepler
elements variation is used [21]. According to this model, the variation
of the orbital elements 𝑎, 𝑒, 𝑖, 𝛺, 𝜔,𝑀0 is described as a function of the

perturbing acceleration vector 𝐚𝐩:

𝐚𝐩 =
[

𝑎𝑟, 𝑎𝑠, 𝑎𝑤
]𝑇 (14)

The three components of the perturbation acceleration are aligned
with three principal axes (black color) shown in Fig. 13. ‘‘R’’ represents
the radial direction, ‘‘S’’ the local horizon and ‘‘W’’ the normal to the
orbital plane.

As a perturbing acceleration, only the solar wind effect on the mag-
netic sail is accounted for. Third body contributions like Jupiter’s and
Saturn’s gravitational fields are ignored for the present analysis due to
their non-secular but rather periodic nature and in order to isolate the
effect of the magnetic sail. In Fig. 13, the already introduced coordinate
system of the magnetic sail is illustrated in red color. It is evident that
the drag and lift forces are aligned with the radial and normal directions
respectively, whereas the side force is showing in the opposite direction
of the local horizon. Therefore, the correlation between the perturbing
acceleration and the magnetic sail forces experiences the following rule:

[

𝑎𝑟, 𝑎𝑠, 𝑎𝑤
]𝑇 = 1

𝑚𝑡𝑜𝑡
⋅
[

𝐹𝑧,−𝐹𝑦, 𝐹𝑥
]𝑇 (15)

where 𝑚𝑡𝑜𝑡 stands for the total mass of the spacecraft with the magnetic
sail system.

The solar wind environment is modeled using two parameters, the
solar wind particle density 𝑛𝑝,𝑆𝑊 and the solar wind velocity 𝑣𝑆𝑊 . The
values for the ecliptic and polar solar wind velocity have been taken
from McComas et al. [22], and are in the range 𝑣𝑆𝑊 = 400–750 km/s,
corresponding to 𝛽 = 1.3⋅10−3−2.5⋅10−3. For the number density 𝑛𝑝,𝑆𝑊 ,
a quadratic law is used according to:

𝑛𝑝,𝑆𝑊 (𝑟) = 𝑛𝑝,𝐴𝑈
𝑟2𝐴𝑈
𝑟2

(16)

with a conservative estimate 𝑛𝑝,𝐴𝑈 = 5 cm−3 [2].
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Fig. 12. Lift (𝐹𝑥) and side (𝐹𝑦) forces as a function of velocity and angle. A sail current 𝐼 = 105 A and sail radius 𝑅 = 100m are used.

Fig. 13. Coordinate systems used in the orbital analysis. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 14. Magnetic sail forces in the solar wind for a sail with 𝑅 = 350m and 𝐼 = 104 A
at a distance of 1 AU from the sun as a function of the sail angle.

For the sail design, a radius 𝑅 = 350m and a current 𝐼 = 104 A
is utilized. The resulting drag, lift and side forces as a function of the
magnetic sail angle in the ecliptic plane (using 𝛽𝑆𝑊 = 1.67 ⋅ 10−3) at
a distance of 1 AU from the sun are plotted in Fig. 14. The results for
angles larger than 90◦ are obtained after symmetry considerations of
the results shown in Section 5.

For all three scenarios presented here, the same magnetic sail
configuration, spacecraft mass and initial orbit are used. A spacecraft
mass (excluding the magnetic sail system) of 450 kg is assumed, similar
to the mass of the New Horizons probe [23]. In order to estimate the

mass of the current carrying loop, a maximal current density 𝑗𝑚𝑎𝑥 =
106 A∕cm−2 is used [24,25] together with a density 𝜌 = 9000 kg∕m3

which is a conservative estimate for superconductors based on copper
oxide (CuO) and YBCO. For a sail radius equal to 𝑅 = 350m, this results
to a coil mass of 40 kg. Additional tethers, attitude control system for
the sail, shielding mass and power system have been estimated with
a conservative estimate of 275% of the coil mass. The masses of each
individual subsystem (relative to the coil mass) are reported as follows
and are based on the work of Raible [26]:

1. Deployment spool mass: 30% - 12 kg
2. Tethers mass: 70% - 28 kg
3. Tether shielding mass: 30% - 12 kg
4. Sail shielding mass (based on the Benedikt method [27]): 85% -

34 kg
5. Additional power system: 60% - 24 kg

No active cooling system is included as a high-temperature super-
conducting material is assumed. With those assumptions, the total mass
of the magnetic sail system is 150 kg and the total mass of the probe
reaches 𝑚𝑡𝑜𝑡=600 kg. The ratio of sail to total mass based on these
estimates amounts to 25%, which is within the range of values reported
by Zubrin et al. [2] (13%), by Häfner [3] (36%) and Perakis et al. [4]
(30%).

With this setup, three distinct scenarios are simulated. In all three
missions, the starting orbit corresponds to 𝑎0 = 1AU, 𝑒0 = 0.0167,
𝑖0 = 23.44◦ with a characteristic energy relative to the earth 𝐶3 =
0 km2∕s2. The first scenario corresponds to an increase of the semi-
major axis of the probe, representing a mission to the outer planets.
In the second scenario, a mission to the inner planets (in this case
Mercury) is simulated. Finally, a trajectory with a combined increase
of both the semi-major axis and the inclination is calculated.

The choice of the optimal magnetic sail pitch angle for the first two
scenarios can be derived by looking at the Gauss form of the Lagrange
planetary equations and specifically the equation for semi-major axis,
as shown in Eq. (17).

𝑑𝑎
𝑑𝑡

=
2𝑒 sin(𝜈)

𝑛
√

1 − 𝑒2
⋅ 𝑎𝑟 +

2𝑎
√

1 − 𝑒2
𝑛𝑟

⋅ 𝑎𝑠 (17)

In the current notation, 𝜈 is the true anomaly, 𝑎 the semi-major axis,
𝑒 the eccentricity, 𝑛 the mean motion and 𝑟 the orbital distance. Both
a radial outwards acceleration (𝑎𝑟) and an acceleration along the local
horizon (𝑎𝑠) have a positive effect on the increase of the orbit’s semi-
major axis, with the acceleration along the 𝑆-axis having a much larger
influence. Therefore for an increase of the semi-major axis (mission to
the outer planets), the most effective sail configuration should provide
𝐹𝑠 > 0 and hence 𝐹𝑦 < 0 based on Eq. (15), whereas for a mission
to the inner planets 𝐹𝑦 > 0 is optimal. In the first two scenarios, the
additional constraint of constant inclination is introduced. In order to
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Fig. 15. Spiral outwards (left) and inwards (right) trajectories for 𝜃 = 180◦ and 𝜃 = 0◦. A sail with 𝑅 = 350m and 𝐼 = 104 A is chosen, with a total spacecraft mass of 600 kg.

Fig. 16. Trajectory of the spacecraft during the plane change maneuver. A sail with 𝑅 = 350m and 𝐼 = 104 A is chosen, with a total spacecraft mass of 600 kg. This corresponds
to the first 20 years of the mission.

achieve that, the off-plane acceleration component (lift force) has to be
zero, as shown in the Lagrange equation for the inclination:

𝑑𝑖
𝑑𝑡

=
𝑟 cos(𝜔 + 𝜈)

𝑛𝑎2
√

1 − 𝑒2
⋅ 𝑎𝑤 (18)

where 𝜔 stands for the argument of periapsis. With those constraints
and with the established results shown in Fig. 14, a unique solution for
the optimal open-loop control can be found: for the mission towards
the outer planets, 𝜃 = 180◦ is chosen and for missions towards the inner
planets, 𝜃 = 0◦ is applied.

The resulting orbit for those two scenarios is illustrated in Fig. 15.
Note that those trajectories are not optimal trajectories but rather
example transfers, demonstrating the capability of the magnetic sail
as a propulsion system using a constant sail angle. In both cases, the
blue arrows represent the magnetic sail forces and are scaled with the
relative magnitude of the force for each configuration. As expected, due
to the modeling choices for the solar wind density, the force magnitude
drops quadratically with increasing distance from the sun. Due to this
fact, the inwards spiral is achieved very efficiently, with a total mission
duration of 1 year, whereas for the outward mission approximately
6.5 years have to elapse.

The application of magnetic sails for the increase or decrease of the
semi-major axis in order to facilitate interplanetary missions has been
the subject of several studies in the past [6]. However little research
has been performed on analyzing a potential off-plane maneuver using
magnetic sails. The derivation of the lift and side forces in the present
work allows for the design of such an off-plane maneuver. Orbital
inclination changes using impulsive maneuvers typically occur at the
orbital nodes and require large amounts of propellant. This is also the
reason why most interplanetary missions requiring a plane-change rely

Fig. 17. Trajectory of the probe for the plane change mission with corresponding
acceleration vectors. A sail with 𝑅 = 350m and 𝐼 = 104 A is chosen, with a total
spacecraft mass of 600 kg. This corresponds to the first 6 years of the mission.

on gravitational assist, which however significantly increases the mis-
sion duration. Having a propellant-less alternative for those expensive
maneuvers can be very useful, especially regarding potential missions
to discovered interstellar asteroids which typically have trajectories
that are not aligned with the ecliptic plane [28,29].

Using the insights given by Eq. (18), in order to achieve a monoton-
ically increasing inclination over time, the term cos(𝜔+𝜈) ⋅𝑎𝑤 has to be
positive. As the sign of the cos(𝜔 + 𝜈) factor changes at the perihelion
and aphelion (for 𝜔 = 0◦), the optimal control requires a change in the
pitch angle over time. Specifically, in the first half of the orbit where
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Fig. 18. Magnetic sail forces (left) as well as semi-major axis and inclination (right) as a function of the mission time. A sail with 𝑅 = 350m and 𝐼 = 104 A is chosen, with a total
spacecraft mass of 600 kg.

90◦ < 𝜔 + 𝜈 < 270◦, a negative acceleration 𝑎𝑤 is required, whereas
for the second half of the orbit, a positive acceleration is needed. This
coincides with the findings reported by Rugiero et al. [30] for the
design of low-thrust trajectories. Therefore, in order to maximize both
the inclination increase and the semi-major increase at the same time,
the following values for 𝜃 are chosen:
{

𝜃 = 220◦ cos(𝜔 + 𝜈) < 0
𝜃 = 140◦ cos(𝜔 + 𝜈) > 0

The optimal control values are also indicated in Fig. 14 with the
vertical dashed lines. Using this bang–bang open loop control, the
trajectory of the probe is simulated within a time-frame of 20 years.
Note that those trajectories are not optimal trajectories but rather
example transfers, demonstrating the capability of the magnetic sail as
a propulsion system. The resulting orbit is shown in Fig. 16. The black
dots indicate the locations where the change in the orientation of the
magnetic sail occurs. In the right sub-figure of Fig. 16, a side-view of
the orbital plane is shown, clearly demonstrating the increase in the
orbital inclination.

The orientation of the resulting force generated by the interaction
between the solar wind and the sail can be found in Fig. 17 for the
same trajectory. Here, only the first 6 years of the orbit are shown for
visualization purposes. A fast flip in the direction of the acceleration
vector can be observed in the two instances where the spacecraft passes
through the location corresponding to cos(𝜔+𝜈) = 0, which is the result
of the bang–bang control loop.

A clear view of the magnetic sail angle as well as the resulting
forces are shown in the left sub-figure of Fig. 18. As expected, the
radial force is always larger than zero, since there is no configuration
producing a negative drag. Moreover, since a positive force along the
local horizon has been enforced, 𝐹𝑠 also remains larger than zero for
the entire trajectory. On the other hand, the only force being affected
by the active control is the off-plane component 𝐹𝑤 which alternates
between negative and positive values depending on the position along
the orbital track. All three components show a decrease in magnitude
over time, which is explained by the increasing distance from the sun.

The resulting profiles for the orbital elements of interest are shown
in the right sub-figure of Fig. 18. For the semi-major axis, a steady in-
crease over time is visible, stemming from the continuous acceleration
along the local horizon and the radial direction. For the inclination,
additionally to the increasing value, the locations where the change
in control angle occurs are also easy to spot. Specifically, one notices
the locations where the profile becomes flatter and where its time
derivative approaches zero; those locations correspond to the situation
where cos(𝜔 + 𝜈) = 0.

7. Conclusion

In the present work, the interaction between incoming ions and
a magnetic sail consisting of a single current carrying loop has been
investigated. Specifically, a three-dimensional particle simulation us-
ing the Lorentz force and the Biot–Savart law for simulation of the
trajectory of individual ions has been utilized.

By simulating various starting initial conditions of the incoming
ions, a relationship between the drag force and the velocity is obtained.
The scaling of this force with the sail current and size is in agreement
with previous studies serving as a validation of the model. Apart from
the axial configuration, where the sail’s axis and the incoming velocity
vector coincide, various angles for the sail’s angle of attack have been
simulated. This resulted in a complex dependence of the drag force on
the sail’s relative angle and speed with respect to the incoming flow.

Furthermore, the quantification of the lift and side forces has been
also been performed, showing that they are non-negligible for all
configurations where 𝜃 ≠ 90◦. An accurate description of those values is
very important in the design stage of a potential interplanetary mission.
The reason is that the lift component of the thrust can allow for an
acceleration vertical to the orbital plane, hence leading to a change in
inclination.

Using this finding, the trajectory of a probe equipped with a mag-
netic sail has been carried out, demonstrating an efficient change both
in the semi-major axis and in inclination. This method of acceleration
could replace or assist expensive impulsive maneuvers for plane change
or time-consuming gravity assists.

An extension of the current investigation to include an analysis
of the thrust components due to a variation of the yaw angle is also
necessary to completely describe the efficiency of a magnetic sail. Such
a study is planned and would introduce additional degrees of freedom
when designing interplanetary and interstellar missions, as it would
allow more complex thrust vector configurations and a more detailed
control of the desired trajectory.

Nevertheless, the simplicity of the employed ion model for the
force calculation has to be mentioned. Since the electric field has
been neglected in this study and the simulation is merely an ion
orbit calculation, the resulting forces can be assumed as a zeroth-order
approximation. Studies using particle-in-cell code are planned in order
to quantify the effect of the electrons and the induced electric fields on
the thrust vector.



Acta Astronautica 177 (2020) 122–132

132

N. Perakis

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] P. Janhunen, Electric sail for spacecraft propulsion, J. Propul. Power 20 (4)
(2004) 763–764, http://dx.doi.org/10.2514/1.8580.

[2] R.M. Zubrin, D.G. Andrews, Magnetic sails and interplanetary travel, J. Spacecr.
Rockets 28 (2) (1991) 197–203, http://dx.doi.org/10.2514/3.26230.

[3] T. Häfner, M. Kushwaha, O. Celik, F. Bellizzi, Project Dragonfly: Sail to
the stars, Acta Astronaut. 154 (2019) 311–319, http://dx.doi.org/10.1016/j.
actaastro.2018.05.018.

[4] N. Perakis, L.E. Schrenk, J. Gutsmiedl, A. Koop, M.J. Losekamm, Project
Dragonfly: A feasibility study of interstellar travel using laser-powered light sail
propulsion, Acta Astronaut. 129 (2016) 316–324, http://dx.doi.org/10.1016/j.
actaastro.2016.09.030.

[5] N. Perakis, A.M. Hein, Combining magnetic and electric sails for interstellar
deceleration, Acta Astronaut. 128 (2016) 13–20, http://dx.doi.org/10.1016/j.
actaastro.2016.07.005.

[6] A.A. Quarta, G. Mengali, G. Aliasi, Optimal control laws for heliocentric transfers
with a magnetic sail, Acta Astronaut. 89 (2013) 216–225, http://dx.doi.org/10.
1016/j.actaastro.2013.04.018.

[7] M. Bassetto, A.A. Quarta, G. Mengali, Magnetic sail-based displaced non-
keplerian orbits, Aerosp. Sci. Technol. 92 (2019) 363–372, http://dx.doi.org/
10.1016/j.ast.2019.06.018.

[8] H. Nishida, H. Ogawa, I. Funaki, K. Fujita, H. Yamakawa, Y. Inatani, Verification
of momentum transfer process on magnetic sail using MHD model, in: 41st
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper
2005–4463, 2005, http://dx.doi.org/10.2514/6.2005-4463.

[9] H. Nishida, H. Ogawa, I. Funaki, K. Fujita, H. Yamakawa, Y. Nakayama, Two-
dimensional magnetohydrodynamic simulation of a magnetic sail, J. Spacecr.
Rockets 43 (3) (2006) 667–672, http://dx.doi.org/10.2514/1.15717.

[10] K. Fujita, Particle simulation of moderately-sized magnetic sails, J. Space
Technol. Sci. 20 (2) (2004) 2_26–2_31, http://dx.doi.org/10.11230/jsts.20.2-26.

[11] Y. Ashida, I. Funaki, H. Yamakawa, Y. Kajimura, H. Kojima, Thrust evaluation
of a magnetic sail by flux-tube model, J. Propul. Power 28 (3) (2012) 642–651,
http://dx.doi.org/10.2514/1.B34332.

[12] Y. Kajimura, I. Funaki, M. Matsumoto, I. Shinohara, H. Usui, H. Yamakawa,
Thrust and attitude evaluation of magnetic sail by three-dimensional hybrid
particle-in-cell code, J. Propul. Power 28 (3) (2012) 652–663, http://dx.doi.org/
10.2514/1.B34334.

[13] I. Funaki, Y. Nakayama, Sail propulsion using the solar wind, J. Space Technol.
Sci. 20 (2) (2004) 2_1–2_16, http://dx.doi.org/10.11230/jsts.20.2_26.

[14] C. Gros, Universal scaling relation for magnetic sails: momentum braking in
the limit of dilute interstellar media, J. Phys. Commun. 1 (4) (2017) 045007,
http://dx.doi.org/10.1088/2399-6528.

[15] I. Funaki, H. Kojima, H. Yamakawa, Y. Nakayama, Y. Shimizu, Laboratory
experiment of plasma flow around magnetic sail, in: High Energy Density
Laboratory Astrophysics, Springer, 2006, pp. 63–68, http://dx.doi.org/10.1007/
978-1-4020-6055-7-12.

[16] K. Ueno, I. Funaki, T. Kimura, H. Horisawa, H. Yamakawa, Thrust measurement
of a pure magnetic sail using parallelogram-pendulum method, J. Propul. Power
25 (2) (2009) 536–539, http://dx.doi.org/10.2514/1.39211.

[17] J. Slough, High beta plasma for inflation of a dipolar magnetic field as a magnetic
sail, in: Proceedings of the IEPC Conference, Citeseer, 2001, pp. 14–19.

[18] J. Gunn, S. Carpentier-Chouchana, F. Escourbiac, T. Hirai, S. Panayotis, R. Pitts,
Y. Corre, R. Dejarnac, M. Firdaouss, M. Kočan, et al., Surface heat loads on
the ITER divertor vertical targets, Nucl. Fusion 57 (4) (2017) 046025, http:
//dx.doi.org/10.1088/1741-4326.

[19] I.A. Crawford, Project Icarus: A review of local interstellar medium properties
of relevance for space missions to the nearest stars, Acta Astronaut. 68 (7–8)
(2011) 691–699, http://dx.doi.org/10.1016/j.actaastro.2010.10.016.

[20] J.P. Kleijnen, Kriging metamodeling in simulation: A review, European J. Oper.
Res. 192 (3) (2009) 707–716, http://dx.doi.org/10.1016/j.ejor.2007.10.013.

[21] W.E. Wiesel, Modern astrodynamics, Createspace, 2010.
[22] D. McComas, H. Elliott, N. Schwadron, J. Gosling, R. Skoug, B. Goldstein, The

three-dimensional solar wind around solar maximum, Geophys. Res. Lett. 30 (10)
(2003) http://dx.doi.org/10.1029/2003GL017136.

[23] Y. Guo, R.W. Farquhar, New Horizons mission design, Space Sci. Rev. 140 (1–4)
(2008) 49–74, http://dx.doi.org/10.1007/s11214-007-9242-y.

[24] M. Leroux, K.J. Kihlstrom, S. Holleis, M.W. Rupich, S. Sathyamurthy, S. Fleshler,
H. Sheng, D.J. Miller, S. Eley, L. Civale, et al., Rapid doubling of the critical
current of YBa2Cu3O7- 𝛿 coated conductors for viable high-speed industrial
processing, Appl. Phys. Lett. 107 (19) (2015) 192601, http://dx.doi.org/10.
1063/1.4935335.

[25] P. Chaddah, Critical current densities in superconducting materials, Sadhana 28
(1–2) (2003) 273–282, http://dx.doi.org/10.1007/BF02717137.

[26] M. Raible, Concept Development for a Magnetic Sail Deceleration System (thesis),
Technical University of Munich, 2013.

[27] A.R. Martin, Project Daedalus: The Final Report on the BIS Starship Study, British
Interplanetary Society, 1978.

[28] A.M. Hein, N. Perakis, T.M. Eubanks, A. Hibberd, A. Crowl, K. Hayward, R.G.
Kennedy III, R. Osborne, Project Lyra: Sending a spacecraft to 1I/’Oumuamua
(former A/2017 U1), the interstellar asteroid, Acta Astronaut. 161 (2019)
552–561, http://dx.doi.org/10.1016/j.actaastro.2018.12.042.

[29] A. Hibberd, N. Perakis, A.M. Hein, Sending a spacecraft to interstellar Comet
C/2019 Q4 (Borisov), 2019, arXiv preprint arXiv:1909.06348.

[30] A. Ruggiero, P. Pergola, S. Marcuccio, M. Andrenucci, Low-thrust maneuvers
for the efficient correction of orbital elements, in: 32nd International Electric
Propulsion Conference, 2011, pp. 11–15.

http://dx.doi.org/10.2514/1.8580
http://dx.doi.org/10.2514/3.26230
http://dx.doi.org/10.1016/j.actaastro.2018.05.018
http://dx.doi.org/10.1016/j.actaastro.2018.05.018
http://dx.doi.org/10.1016/j.actaastro.2018.05.018
http://dx.doi.org/10.1016/j.actaastro.2016.09.030
http://dx.doi.org/10.1016/j.actaastro.2016.09.030
http://dx.doi.org/10.1016/j.actaastro.2016.09.030
http://dx.doi.org/10.1016/j.actaastro.2016.07.005
http://dx.doi.org/10.1016/j.actaastro.2016.07.005
http://dx.doi.org/10.1016/j.actaastro.2016.07.005
http://dx.doi.org/10.1016/j.actaastro.2013.04.018
http://dx.doi.org/10.1016/j.actaastro.2013.04.018
http://dx.doi.org/10.1016/j.actaastro.2013.04.018
http://dx.doi.org/10.1016/j.ast.2019.06.018
http://dx.doi.org/10.1016/j.ast.2019.06.018
http://dx.doi.org/10.1016/j.ast.2019.06.018
http://dx.doi.org/10.2514/6.2005-4463
http://dx.doi.org/10.2514/1.15717
http://dx.doi.org/10.11230/jsts.20.2-26
http://dx.doi.org/10.2514/1.B34332
http://dx.doi.org/10.2514/1.B34334
http://dx.doi.org/10.2514/1.B34334
http://dx.doi.org/10.2514/1.B34334
http://dx.doi.org/10.11230/jsts.20.2_26
http://dx.doi.org/10.1088/2399-6528
http://dx.doi.org/10.1007/978-1-4020-6055-7-12
http://dx.doi.org/10.1007/978-1-4020-6055-7-12
http://dx.doi.org/10.1007/978-1-4020-6055-7-12
http://dx.doi.org/10.2514/1.39211
http://refhub.elsevier.com/S0094-5765(20)30447-1/sb17
http://refhub.elsevier.com/S0094-5765(20)30447-1/sb17
http://refhub.elsevier.com/S0094-5765(20)30447-1/sb17
http://dx.doi.org/10.1088/1741-4326
http://dx.doi.org/10.1088/1741-4326
http://dx.doi.org/10.1088/1741-4326
http://dx.doi.org/10.1016/j.actaastro.2010.10.016
http://dx.doi.org/10.1016/j.ejor.2007.10.013
http://refhub.elsevier.com/S0094-5765(20)30447-1/sb21
http://dx.doi.org/10.1029/2003GL017136
http://dx.doi.org/10.1007/s11214-007-9242-y
http://dx.doi.org/10.1063/1.4935335
http://dx.doi.org/10.1063/1.4935335
http://dx.doi.org/10.1063/1.4935335
http://dx.doi.org/10.1007/BF02717137
http://refhub.elsevier.com/S0094-5765(20)30447-1/sb26
http://refhub.elsevier.com/S0094-5765(20)30447-1/sb26
http://refhub.elsevier.com/S0094-5765(20)30447-1/sb26
http://refhub.elsevier.com/S0094-5765(20)30447-1/sb27
http://refhub.elsevier.com/S0094-5765(20)30447-1/sb27
http://refhub.elsevier.com/S0094-5765(20)30447-1/sb27
http://dx.doi.org/10.1016/j.actaastro.2018.12.042
http://arxiv.org/abs/1909.06348

	Maneuvering through solar wind using magnetic sails
	Introduction
	Computational setup
	Drag for =90
	Dependency of drag on the angle of attack
	Lift and side forces
	Orbital plane change using magnetic sail
	Conclusion
	Declaration of competing interest
	References


